화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.5, 630-634, October, 2018
회분 병류 4단 평형추출에 의한 폐플라스틱 열분해유 유분 중의 파라핀 성분의 회수
Recovery of Paraffin Components from Pyrolysis Oil Fraction of Waste Plastic by Batch Cocurrent 4 Stages Equilibrium Extraction
E-mail:
초록
본 연구는 폐플라스틱 열분해유(WPPO) 유분의 품질향상의 일환으로 유분 중에 함유된 파라핀 성분의 회수를 회분 병류 4회 평형추출에 의해 검토했다. 원료로서는 WPPO를 단증류하여 회수한 유출온도 120-350 ℃의 유분을, 용매로서는 소량의 물이 첨가된 디메틸포름아마이드(DMF) 용액을 각각 사용했다. 평형추출 횟수(n)와 파라핀 성분의 탄소수가 증가할수록 추잔유 중에 함유된 파라핀 성분의 농도는 증가했다. n = 4에서 회수된 추잔유 중의 C12, C14, C16, C18 파라핀 성분의 농도는 원료의 농도에 비해 약 1.2, 1.5, 1.6, 1.8배 각각 높았다. 파라핀 성분의 회수율(추잔유 중의 잔류율)은 n가 증가할수록 급격히 감소하고 탄소수가 큰 성분일수록 급격히 증가했다. 또한, 원료 중에 함유된 전체 파라핀 성분(C7-C24)에 대한 n = 1 - 4에서의 회수율을 예측 가능했다. 본 연구 결과를 통해 회수한 추잔유는 신재생에너지로 사용이 가능할 것이라 기대된다.
The recovery of paraffin components contained in the fraction as a part of improving the quality for the fraction of waste plastics pyrolysis oil (WPPO) was investigated by batch cocurrent 4 stages equilibrium extraction. The fraction at a distilling temperature of 120-350 ℃ recovered from WPPO by the simple distillation and a little water-added dimethylformamide (DMF) solution were used as a raw material and solvent, respectively. As the number of equilibrium extraction (n) and the carbon number of paraffin component increased, the concentration of paraffin component contained in the raffinate increased. The concentrations of C12, C14, C16 and C18 paraffin components present in the raffinate recovered at n = 4 were about 1.2, 1.5, 1.6 and 1.8 times higher than those of using the raw materials, respectively. Recovery rates (residue rates present in raffinate) of paraffin components rapidly decreased with increasing n, and increased sharply with increasing the carbon number. Furthermore, it was possible to predict the recovery rates at n = 1 - 4 for all paraffin components (C7-C24) contained in the raw material. The raffinate recovered through this study is expected to be used as a renewable energy.
  1. Lee KH, Noh NS, Shin DH, Seo YH, Polym. Degrad. Stabil., 78, 539 (2002)
  2. Seo YH, J. Korea Soc. Environ. Adm., 9, 331 (2003)
  3. Kim DC, Woo JK, J. Korean Soc. Environ. Eng., 26, 1232 (2004)
  4. Murata K, Hirano Y, Sakata Y, Uddin MA, J. Anal. Appl. Pyrolysis, 65, 71 (2002)
  5. Moliner R, Lazaro M, Suelves I, Energy Fuels, 11(6), 1165 (1997)
  6. Phae CG, Kim YS, Jo CH, Pyoun US, J. Energy Eng., 14, 159 (2005)
  7. Kim SJ, Kim SC, Kawasaki J, Sep. Sci. Technol., 38(1), 179 (2003)
  8. Al-Sahhaf TA, Kapetanovic E, Fluid Phase Equilib., 18, 271 (1996)
  9. Radwan GM, Al-Muhtaseb SA, Fahim MA, Fluid Phase Equilib., 29, 175 (1997)
  10. Radwan GM, Almuhtaseb SA, Dowaidar AM, Fahim MA, Ind. Eng. Chem. Res., 36(2), 414 (1997)
  11. Kang HC, Kim SJ, Polycycl. Aromat. Compd., 36, 7445 (2016)
  12. Kim SJ, Chun YJ, Jeong HJ, Appl. Chem. Eng., 18, 168 (2007)
  13. Kim SJ, Kim SC, Sep. Sci. Technol., 39(5), 1093 (2004)
  14. Egashira R, Kawasaki J, J. Japan Pet. Inst., 40, 107 (1997)
  15. Kim SJ, Kang HC, Kim YS, Jeong HJ, Bull. Korean Chem. Soc., 31, 1143 (2010)