화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.11, 2191-2197, November, 2018
Sorption-enhanced reforming of tar: Influence of the preparation method of CO2 absorbent
E-mail:
To remove tar and produce environment-friendly H2, one of the promising routes is the sorption-enhanced steam reforming (SESR) process, in which the CO2 sorbent is a key element. We prepared the CO2 sorbents with Ca12Al14O33 as carrier with various methods. Their characterizations were examined, and the sample prepared by solgel (SG) method showed the strongest CaO and Ca12Al14O33 phases and the most excellent pore structure among all the samples. Then, a thermogravimetric experiment was conducted, and the results showed that the sample prepared by sol-gel (SG) method had the best CO2 adsorption capacity and excellent long-term cyclic stability. Finally, the sorbent was used into the steam reforming experiments of tar. Under the action of the sorbent, the reforming reaction was enhanced in-situ, with the H2 yield and concentration improved obviously, and especially, H2 concentration can reach over 98.85%.
  1. Gao NB, Liu S, Han Y, Xing C, Li AM, Int. J. Hydrog. Energy, 40(25), 7983 (2015)
  2. Quitete CPB, Bittencourt RCP, Souza MMVM, Appl. Catal. A: Gen., 478, 234 (2014)
  3. Yang J, Wang XG, Li L, Shen K, Lu XG, Ding WZ, Appl. Catal. B: Environ., 96(1-2), 232 (2010)
  4. Xie HQ, Yu QB, Zhang JR, Liu JL, Zuo ZL, Liu JL, Qin Q, Environ. Prog. Sust. Energy, 36, 729 (2017)
  5. Xie HQ, Yu QB, Zuo ZL, Zhang JR, Han ZC, Qin Q, J. Therm. Anal. Calorim., 126, 1621 (2016)
  6. Yue BH, Wang XG, Ai XP, Yang J, Li L, Lu XG, Ding WZ, Fuel Process. Technol., 91(9), 1098 (2010)
  7. Colby JL, Wang T, Schmidt LD, Energy Fuels, 24, 1341 (2010)
  8. Zhang RQ, Wang YC, Brown RC, Energy Conv. Manag., 48(1), 68 (2007)
  9. Xie HQ, Zhang JR, Yu QB, Zuo ZL, Liu JL, Qin Q, Energy Fuels, 30(3), 2336 (2016)
  10. Li CS, Hirabayashi D, Suzuki K, Fuel Process. Technol., 90(6), 790 (2009)
  11. Furusawa T, Tsutsumi A, Appl. Catal. A: Gen., 278(2), 195 (2005)
  12. Swierczynski D, Courson C, Kiennemann A, Chem. Eng. Process., 47(3), 508 (2008)
  13. Widayatno WB, Guan GQ, Rizkiana J, Hao XG, Wang ZD, Samart C, Abudula A, Fuel, 132, 204 (2014)
  14. Yang J, Wang XG, Li L, Shen K, Lu XG, Ding WZ, Chem. J. Chinese Univ., 31, 1841 (2010)
  15. Xie HQ, Yu QB, Zuo ZL, Han ZC, Yao X, Qin Q, Int. J. Hydrog. Energy, 41, 2345 (2010)
  16. Yang Z, Zhang Y, Ding W, Zhang Y, Shen P, Zhou Y, Liu Y, Huang S, Lu X, J. Nat. Gas Chem., 18, 407 (2009)
  17. Xie HQ, Yu QB, Yao X, Duan WJ, Zuo ZL, Qin Q, J. Energy Chem., 24, 299 (2015)
  18. Li CS, Hirabayashi D, Suzuki K, Appl. Catal. B: Environ., 88(3-4), 351 (2009)
  19. Dou BL, Wang C, Song YC, Chen HS, Jiang B, Yang MJ, Xu YJ, Renew. Sust. Energ. Rev., 53, 536 (2016)
  20. Ortiz AL, Harrison DP, Ind. Eng. Chem. Res., 40(23), 5102 (2001)
  21. Martavaltzi CS, Lemonidou AA, Microporous Mesoporous Mater., 110, 119 (2008)
  22. Kinoshita CM, Turn SQ, Int. J. Hydrog. Energy, 28(10), 1065 (2003)
  23. Xie HQ, Yu QB, Wei MQ, Duan WJ, Yao X, Qin Q, Zuo ZL, Int. J. Hydrog. Energy, 40, 142 (2015)
  24. Xie HQ, Yu QB, Lu H, Zhang YY, Zhang JR, Qin Q, Int. J. Hydrog. Energy, 42, 28718 (2017)
  25. Zamboni I, Courson C, Kiennemann A, Catal. Today, 176(1), 197 (2011)
  26. Blamey J, Anthony EJ, Wang J, Fennell PS, Prog. Energy Combust. Sci., 36(2), 260 (2010)
  27. Xie MM, Zhou ZM, Qi Y, Cheng ZM, Yuan WK, Chem. Eng. J., 207-208, 142 (2012)
  28. Zhou ZM, Qi Y, Xie MM, Cheng ZM, Yuan WK, Chem. Eng. Sci., 74, 172 (2012)
  29. Martavaltzi CS, Lemionidou AA, Ind. Eng. Chem. Res., 47(23), 9537 (2008)
  30. Vagia EC, Lemonidou AA, Appl. Catal. A: Gen., 351(1), 111 (2008)
  31. Chen F, Hong YR, Sun JL, Bu JL, J. Univ. Sci. Technol. Beijing, 13, 82 (2006)
  32. Li ZS, Cai NS, Huang YY, Han HJ, Energy Fuels, 9, 1447 (2005)
  33. Gong L, Lin Z, Ning S, Sun J, Shen J, Torimoto Y, Li Q, Mater. Lett., 64, 1322 (2010)
  34. Zamboni I, Courson C, Kiennemann A, Catal. Today, 176(1), 197 (2011)