화학공학소재연구정보센터
Macromolecular Research, Vol.26, No.10, 872-881, October, 2018
Fabrication of 3D Self-Assembled Nonmulberry Antheraea Mylitta (tasar) Fibroin Nonwoven Mats for Wound Dressing Applications
E-mail:
This research was focused on the two-step regeneration of Antheraea mylitta (tasar) fibroin in the form of electrospun 3D self-assembled nanofibrous nonwoven mats using ionic liquid and formic acid/CaCl2. The self-assembled structure of tasar nanofibrous nonwoven mats was dependent on the silk fibroin concentration and spinning voltage. The secondary conformation of tasar fibroin protein before and after electrospinning was analyzed by Fourier transformation infrared spectroscopy. The morphology of the nanofibrous mat was studied by scanning electron microscope. The self-assembled 3D tasar nonwoven nanofibrous construct was a highly porous and spongy structure with high water absorption and water vapor transmission. Highly porous 3D self-assembled tasar nonwoven nanofibrous construct favored good growth and proliferation of L929 skin fibroblast cells. Based on these properties, 3D self-assembled tasar nonwoven nanofibrous construct is a promising material for skin tissue engineering and wound dressing applications.
  1. Falanga V, Wound Repair Regen., 8, 347 (2000)
  2. Mustoe TA, O’Shauqhnessy K, Kloeters O, Plast. Reconstr. Surg., 117, 35S (2006)
  3. Rieger KA, Birch NP, Schiffman JD, J. Mater. Chem. B, 1, 4531 (2013)
  4. Srivastava CM, Purwar R, J. Appl. Polym. Sci., 134, 1 (2017)
  5. Formhals A, Gastell RS, US1975504 A (1934).
  6. Sun B, Long YZ, Yu F, Li MM, Zhang HD, Li WJ, Xu TX, Nanoscale, 4, 2134 (2012)
  7. Li M, Long Y, Mater. Sci. Forum, 668, 95 (2011)
  8. Okuzaki H, Takahashi T, Miyajima N, Suzuki Y, Kuwabara T, Macromolecules, 39(13), 4276 (2006)
  9. Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL, Prog. Polym. Sci, 39, 862 (2014)
  10. Acharya C, Ghosh SK, Kundu SC, Acta Biomater., 5, 429 (2009)
  11. Panda N, Biswas A, Sukla LB, Pramanik K, Appl. Biochem. Biotechnol., 174(7), 2403 (2014)
  12. Bhattacharjee P, Kundu B, Naskar D, Maiti TK, Bhattacharya D, Kundu SC, 103, 271 (2015).
  13. Zhao H, Ren X, Zhang Y, Huang L, Bio-med Mater. Eng., 26, S89 (2015)
  14. Srivastava CM, Purwar R, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 68, 276 (2016)
  15. Mandal BB, Kundu SC, Biomaterials, 30, 2956 (2009)
  16. Gadelmawla ES, Koura MM, Maksoud TM, ElewaI M, Soliman HH, J. Mater. Process. Technol., 123, 133 (2002)
  17. Wharram SE, Zhang X, Kaplan DL, McCarthy SP, Macromol. Biosci., 10, 246 (2010)
  18. Pei Z, Sun Q, Sun X, Wang Y, Zhao P, Biomed. Mater. Eng., 26, S111 (2015)
  19. Moraes MA, Weska RF, Beppu MM, J. Biomed. Mater. Res. B: Appl. Biomater., 102, 869 (2014)
  20. Ayutsede J, Gandhi M, Sukigara S, Micklus M, Chen HE, Ko F, Polymer, 46(5), 1625 (2005)
  21. Kasoju N, Bhonde RR, Bora U, J. Tissue Eng. Regen. Med., 3, 539 (2009)
  22. Wang XF, Zhang K, Zhu MF, Yu H, Zhou Z, Chen YM, Hsiao BS, Polymer, 49(11), 2755 (2008)
  23. Bhattacharjee P, Kundu B, Naskar D, Maiti TK, Bhattacharya D, Kundu SC, Biopolymers, 103, 271 (2015)
  24. Panda NN, Biswas A, Pramanik K, Jonnalagadda S, J. Biomed. Mater. Res., 103, 971 (2015)
  25. Chouhan D, Chakraborty B, Nandi SK, Mandal BB, Acta Biomater., 48, 157 (2017)
  26. Mandal BB, Kundu SC, Macromol. Biosci., 8, 807 (2008)
  27. Zhang Y, Park SJ, J. Polym. Sci. B: Polym. Phys., 55(24), 1890 (2017)
  28. Mallepally RR, Marin MA, Surampudi V, Subia B, Rao RR, Kundu SC, McHugh MA, Biomed. Mater., 10, 035002 (2015)
  29. Kundu B, Kundu SC, Biomed. Mater., 8, 55003 (2013)
  30. Pan J, Liu N, Sun H, Xu F, PLoS One, 9, e11288 (2014)
  31. Ahlfors JEW, Billiar KL, Biomaterials, 28, 2183 (2007)
  32. Panda N, Biswas A, Sukla LB, Pramanik K, Appl. Biochem. Biotechnol., 174(7), 2403 (2014)