화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.67, 140-147, November, 2018
Effects of a naturally derived surfactant on hydrate anti-agglomeration using micromechanical force measurement
E-mail:
The performance of a hydrate anti-agglomerant (AA) on cyclopentane (CyC5) hydrate anti-agglomeration at various concentrations (0.1 wt%, based on the oil phase) using MMF apparatus has been investigated. At low AA concentrations up to 0.01 wt%, the AA reduces the cohesion force (capillary force) by reducing the CyC5-water interfacial tension. At concentrations higher than 0.1 wt%, hydrate hydrophobicity alternation and AA’s thermodynamic inhibition effects are the main part of AA’s mechanism. Additionally, a “temporary agglomeration” phenomenon caused by surface melting of the hydrate particles is also observed, which may indicate the AA’s weak ability to produce stable water-CyC5 interface.
  1. Kelland MA, Energy Fuels, 20(3), 825 (2006)
  2. Sun MW, Firoozabadi A, Fuel, 146, 1 (2015)
  3. Aman ZM, Brown EP, Sloan ED, Sum AK, Koh CA, Phys. Chem. Chem. Phys., 13, 19796 (2011)
  4. Kelland MA, Production Chemicals for Oil and Gas Industry, CRC Press, Taylor & Francis, Boca Raton, FL, 2014.
  5. Sloan ED, Koh CA, Clathrate Hydrates of Natural Gases, CRC Press, Taylor & Francis, Boca Raton, FL, 2008.
  6. Perrin A, Musa OM, Steed JW, Chem. Soc. Rev., 42, 1996 (2013)
  7. Abojaladi N, Kelland MA, Chem. Eng. Sci., 152, 746 (2016)
  8. Gao SQ, Energy Fuels, 23, 2118 (2009)
  9. York JD, Firoozabadi A, Energy Fuels, 23, 2937 (2009)
  10. Sun MW, Firoozabadi A, Energy Fuels, 28(3), 1890 (2014)
  11. Sun MW, Firoozabadi A, Chen GJ, Sun CY, Energy Fuels, 29(5), 2901 (2015)
  12. Sun MW, Wang Y, Firoozabadi A, Energy Fuels, 26(9), 5626 (2012)
  13. Chua PC, Kelland MA, Energy Fuels, 26(2), 1160 (2012)
  14. Chua PC, Kelland MA, Energy Fuels, 27, 1285 (2013)
  15. Norland AK, Kelland MA, Chem. Eng. Sci., 69(1), 483 (2012)
  16. Mady ME, Kelland MA, Chem. Eng. Sci., 144, 275 (2016)
  17. Liu C, Li M, Zhang G, Koh CA, Phys. Chem. Chem. Phys., 17, 20021 (2015)
  18. Brown EP, Koh CA, Phys. Chem. Chem. Phys., 18, 594 (2016)
  19. Smith JD, Meuler AJ, Bralower HL, Venkatesan R, Subramanian S, Majid A, Sloan ED, Koh CA, Sum AK, Energy Fuels, 27, 4546 (2013)
  20. Karanjkar PU, Lee JW, Morris JF, Cryst. Growth Des., 12, 3817 (2012)
  21. Sun MW, Firoozabadi A, J. Colloid Interface Sci., 402, 312 (2013)
  22. Emsley J, Chem. Soc. Rev., 9, 91 (1980)
  23. Zhao HJ, Sun MW, Firoozabadi A, Fuel, 180, 187 (2016)
  24. Dong SB, Li MZ, Firoozabadi A, Fuel, 210, 713 (2017)
  25. Dong SB, Firoozabadi A, J. Chem. Thermodyn., 117, 214 (2018)
  26. Lv YN, Jia ML, Chen J, Sun CY, Gong J, Chen GJ, Liu B, Ren N, Guo SD, Li QP, Energy Fuels, 29(9), 5563 (2015)
  27. Brown EP, PhD Thesis, School of Mines, Colorado, 2016.
  28. Aman ZM, Sloan ED, Sum AK, Koh CA, Energy Fuels, 26(8), 5102 (2012)
  29. Degado-Linares JG, Majid AAA, Sloan ED, Koh CA, Sum AK, Energy Fuels, 27(8), 4564 (2013)
  30. Dieker LE, Thesis MS, School of Mines, Colorado, 2009.
  31. Dieker LE, Aman ZM, George NC, Sum AK, Sloan ED, Koh CA, Energy Fuels, 23, 5966 (2009)
  32. Aman ZM, Dieker LE, Aspenses G, Sum AK, Sloan ED, Koh CA, Energy Fuels, 24, 5441 (2010)
  33. Aman ZM, Joshi SE, Sloan ED, Sum AK, Koh CA, J. Colloid Interface Sci., 376, 283 (2012)
  34. Aman ZM, Olcott K, Pfeiffer K, Sloan ED, Sum AK, Koh CA, Langmuir, 29(8), 2676 (2013)
  35. Wu RB, Aman ZM, May EF, Kozielski KA, Hartley PG, Maeda N, Sum AK, Energy Fuels, 28(6), 3632 (2014)
  36. Liu CW, Li MZ, Chen LT, Li YX, Zheng SX, Han GM, Energy Fuels, 31(5), 4981 (2017)
  37. Wang LX, Sharp D, Masliyah J, Xu ZH, Langmuir, 29(11), 3594 (2013)
  38. Nagappayya SK, Lucente-Schultz RM, Nace VM, Ho VM, J. Chem. Eng. Data, 60(2), 351 (2015)