화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.67, 486-496, November, 2018
Bimetallic Pd@Ni-mesoporous TiO2 nanocatalyst for highly improved and selective hydrogenation of carbonyl compounds under UV light radiation
E-mail:
Bimetallic Pd@Ni nanostructure exhibited enhanced co-catalytic activity for the selective hydrogenation of benzaldehyde compare to their monometallic counterparts. Impregnation of these mono/bimetallic nanostructures on mesoporous TiO2 leads to several surface modifications. The bimetallic PNT-3 (Pd3@Ni1/mTiO2) exhibited large surface area (212 m2 g 1), and low recombination rate of the charge carriers (e -h+). The hydrogenation reaction was analyzed under controlled experiments. It was observed that under UV-light irradiations and saturated hydrogen atmosphere the bimetallic PNT-3 photocatalyst display higher rate constant k = 5.31 10 1 h 1 owing to reduction in the barrier height which leads to efficiently transfer of electron at bimetallic/mTiO2 interface.
  1. Boudjahem AG, Redjel A, Mokrane T, J. Ind. Eng. Chem., 18(1), 303 (2012)
  2. Li B, Hu GS, Jin LY, Hong X, Lu JQ, Luo MF, J. Ind. Eng. Chem., 19(1), 250 (2013)
  3. Jiang HY, Zhang SS, Sun B, Catal. Lett., 148(5), 1336 (2018)
  4. Oliveira RL, Oliveira CS, Landers R, Correia CR, ChemistrySelect, 3, 535 (2018)
  5. Yao P, Zhang J, Xing T, Chen G, Tao R, Choo KH, J. Ind. Eng. Chem., 58, 74 (2018)
  6. Kang SH, Yoo KS, Chung YJ, Kwon YC, J. Ind. Eng. Chem., 62, 329 (2018)
  7. Wu QF, Zhang C, Zhang B, Li XR, Ying Z, Liu T, Lin WW, Yu YC, Cheng HY, Zhao FY, J. Colloid Interface Sci., 463, 75 (2016)
  8. Xia JW, He GY, Zhang LL, Sun XQ, Wang X, Appl. Catal. B: Environ., 180, 408 (2016)
  9. Bathla A, Pal B, ChemistrySelect, 3, 4738 (2018)
  10. Liu LC, Gao F, Concepcion P, Corma A, J. Catal., 350, 218 (2017)
  11. Rana S, Jonnalagadda SB, RSC Adv., 7, 2869 (2017)
  12. Natarajan P, Khan HA, Yoon SH, Jung KD, J. Ind. Eng. Chem., 63, 380 (2018)
  13. Cattaneo S, Freakley SJ, Morgan DJ, Sankar M, Dimitratos N, Hutchings GJ, Catal. Sci. Technol., 8, 1677 (2018)
  14. Monga A, Bathla A, Pal B, Sol. Energy, 155, 1403 (2017)
  15. Monga A, Rather RA, Pal B, Sol. Energy Mater. Sol. Cells, 172, 285 (2017)
  16. Rout L, Kumar A, Dhaka RS, Reddy GN, Giri S, Dash P, Appl. Catal. A: Gen., 538, 107 (2017)
  17. Liu CH, Liu RH, Sun QJ, Chang JB, Gao X, Liu Y, Lee ST, Kang ZH, Wang SD, Nanoscale, 7, 6356 (2015)
  18. Monga A, Pal B, Colloids Surf. A: Physicochem. Eng. Asp., 481, 158 (2015)
  19. Chen YT, Lim HM, Tang QH, Gao YT, Sun T, Yan QY, Yang YH, Appl. Catal. A: Gen., 380(1-2), 55 (2010)
  20. Jayesh T, Itika K, Babu GR, Rao KR, Keri R, Jadhav AH, Nagaraja B, Catal. Commun., 106, 73 (2018)
  21. Glatz M, Stoger B, Himmelbauer D, Veiros LF, Kirchner K, ACS Catal., 8, 4009 (2018)
  22. Han M, Zhang H, Du Y, Yang P, Deng Z, React. Kinet. Mech. Catal., 102, 393 (2010)
  23. Mironenko RM, Belskaya OB, Gulyaeva TI, Trenikhin MV, Nizovskii AI, Kalinkin AV, Bukhtiyarov VI, Lavrenov AV, Likholobov VA, Catal. Today, 279, 2 (2017)
  24. Jiang X, Koizumi N, Guo XW, Song CS, Appl. Catal. B: Environ., 170, 173 (2015)
  25. Fu S, Zhu C, Shi Q, Xia H, Du D, Lin Y, Nanoscale, 8, 5076 (2016)
  26. Fu X, Liu Y, Yao W, Wu Z, Catal. Commun., 83, 22 (2016)
  27. Luo L, Duan ZY, Li H, Kim J, Henkelman G, Crooks RM, J. Am. Chem. Soc., 139(15), 5538 (2017)
  28. Zhang J, Gao K, Wang S, Li W, Han Y, RSC Adv., 7, 6447 (2017)
  29. Hao CH, Guo XN, Pan YT, Chen S, Jiao ZF, Yang H, Guo XY, J. Am. Chem. Soc., 138(30), 9361 (2016)
  30. Fu L, Cai W, Wang A, Zheng Y, Mater. Lett., 142, 201 (2015)
  31. Sharma P, Sasson Y, Green Chem., 19, 844 (2017)
  32. Rather RA, Singh S, Pal B, Appl. Catal. B: Environ., 213, 9 (2017)
  33. Rather RA, Singh S, Pal B, J. Catal., 346, 1 (2017)
  34. Archana J, Harish S, Sabarinathan M, Navaneethan M, Ponnusamy S, Muthamizhchelvan C, Shimomura M, Ikeda H, Aswal D, Hayakawa Y, RSC Adv., 6, 68092 (2016)
  35. Li ZQ, Que YP, Mo LE, Chen WC, Ding Y, Ma YM, Jiang L, Hu LH, Dai SY, ACS Appl. Mater. Interfaces, 7, 10928 (2015)
  36. Sreethawong T, Yoshikawa S, Catal. Commun., 6, 661 (2005)
  37. Liu Y, Wang Z, Fan W, Geng Z, Feng L, Ceram. Int., 40, 3887 (2014)
  38. Zhang N, Liu S, Fu X, Xu YJ, J. Phys. Chem. C, 115, 9136 (2011)
  39. Kaur J, Singh R, Pal B, J. Mol. Catal. A-Chem., 397, 99 (2015)
  40. Prakash J, Kumar P, Harris R, Swart C, Neethling J, van Vuuren AJ, Swart H, Nanotechnology, 27, 355707 (2016)
  41. Pallotti DK, Passoni L, Maddalena P, Di Fonzo F, Lettieri S, J. Phys. Chem. C, 121, 9011 (2017)
  42. De S, Zhang J, Luque R, Yan N, Energy Environ. Sci., 9, 3314 (2016)
  43. Su C, Liu L, Zhang M, Zhang Y, Shao C, CrystEngComm, 14, 3989 (2012)
  44. Luna AL, Dragoe D, Wang K, Beaunier P, Kowalska E, Ohtani B, Uribe DB, Valenzuela MA, Remita H, Colbeau-Justin C, J. Phys. Chem. C, 121, 14302 (2017)
  45. Chen N, Deng D, Li Y, Liu X, Xing X, Xiao X, Wang Y, Sci. Rep., 7, 7692 (2017)
  46. Rather RA, Pooja D, Kumar P, Singh S, Pal B, J. Clean Prod., 175, 394 (2018)
  47. Perret N, Cardenas-Lizana F, Keane MA, Catal. Commun., 16, 159 (2011)
  48. Flores S, Rios-Bernij O, Valenzuela M, Cordova I, Gomez R, Gutierrez R, Top. Catal., 44, 507 (2007)
  49. Singh S, Prajapat R, Rather RA, Pal B, Arab. J. Chem. (2018), doi:http://dx.doi.org/10.1016/j.arabjc.2018.04.002 (in press).
  50. Menezes WG, Neumann B, Zielasek V, Thiel K, Baumer M, ChemphysChem, 14, 1577 (2013)