화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.6, 960-966, November, 2018
실란으로 처리된 대나무 섬유(BF)를 함유한 폴리프로필렌(PP) 복합체의 물성에 대한 열처리의 영향
Effects of Heat Treatment on the Physical Properties of PP Composites with Bamboo Fiber Treated by Silane
E-mail:
초록
본 연구에서는 실란 커플링제로 처리된 대나무 섬유(bamboo fiber, BF)를 포함하는 폴리프로필렌(polypropylene, PP) 복합체의 물성에 미치는 열처리 영향을 고찰하였다. 실란 커플링제로는 (3-mercaptopropyl)trimethoxysilane (MRPS)이 이용되었으며, 실란 처리 후 BF의 표면에 존재하는 수산기와 가수분해된 실란의 수산기 사이의 화학적 결합을 유도하기 위해 25, 80, 110, 130, 150, 170 °C 에서 열처리(curing step)를 진행하였다. 실란처리 후 BF의 화학구조 변화는 FTIR과 XPS를 이용하여 분석하였으며, 열처리된 PP/BF 복합체의 경우 열안정성 및 인장, 굴곡 강도 등이 개선되었으며, 특히 열처리 온도가 110-130 °C 일 때 개선 정도가 우수하였다.
In this study, the effects of heat treatment on the physical properties of polypropylene (PP) composites with bamboo fiber (BF) treated by silane coupling agent were investigated. The silane coupling agent was (3-mercaptopropyl) trimethoxysilane (MRPS). Heat treatment (curing step) at 25, 80, 110, 130, 150, and 170 °C was applied to induce chemical bonding between the hydroxyl group (-OH) present on the surface of BF and the hydroxyl group (-OH) of the hydrolyzed silane. The chemical structures of BF were analyzed by FTIR and XPS. The thermal stability, tensile and flexural strength were improved after applying heat treatment, and the optimum results were obtained when the heat treatment temperature was the range of 110-130 °C.
  1. Pickering KL, Efendy MGA, Le TM, Composites Part A, 83, 98 (2016)
  2. Wang C, Ying S, Fiber. Polym., 15, 117 (2014)
  3. Pan W, Ding X, Gu H, Hu G, Am. J. Mater. Res., 2, 35 (2015)
  4. Mendez JA, Vilaseca F, Pelach MA, Lopez JP, Barbera L, Turon X, Girones J, Mutje P, J. Appl. Polym. Sci., 105(6), 3588 (2007)
  5. Liu D, Song J, Anderson DP, Chang PR, Hua Y, Cellulose, 19, 1449 (2012)
  6. Samal SK, Mohanty S, Nayak SK, J. Reinforc. Plast. Compos., 28, 2729 (2009)
  7. Kim SJ, Moon JB, Kim GH, Ha CS, Polym. Test, 27, 801 (2008)
  8. Das M, Chakraborty D, J. Appl. Polym. Sci., 112(1), 447 (2009)
  9. Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS, eXPRESS Polym. Lett., 2, 413 (2008)
  10. Gwon JG, Lee SY, Chun SJ, Doh GH, Kim JH, Korean J. Chem. Eng., 27(2), 651 (2010)
  11. Girones J, Mendez JA, Boufi S, Vilaseca F, Mutje P, J. Appl. Polym. Sci., 103(6), 3706 (2007)
  12. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A, Compos. Sci. Technol., 67, 1627 (2007)
  13. Nachtigall SMB, Cerveira GS, Rosa SML, Polym. Test, 26, 619 (2007)
  14. Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ, Composites Part B, 30, 321 (1999)
  15. Lee BH, Jeong DS, Kim CW, Park SH, Kim YC, Appl. Chem. Eng., 29(2), 168 (2018)
  16. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C, Composites Part A, 41, 806 (2010)
  17. Abdelmouleh M, Boufi S, Belgacem MN, Duarte AP, Salah AB, Gandini A, Int. J. Adhes. Adhes., 24, 43 (2004)
  18. Lee BH, Lee JW, Lee KW, Kim C, Kim KS, Kim YC, Polym. Korea, 40(4), 607 (2016)
  19. Panaitescu DM, Nicolae CA, Vuluga Z, Vitelaru C, Sanporean CG, Zaharia C, Florea D, Vasilievici G, J. Ind. Eng. Chem., 37, 137 (2016)
  20. Sgriccia N, Hawley MC, Misra M, Composites Part A, 39, 1632 (2008)
  21. Mwaikambo LY, Ansell MP, J. Appl. Polym. Sci., 84(12), 2222 (2002)
  22. Xu G, Wang L, Liu J, Wu J, Appl. Surf. Sci., 280, 799 (2013)
  23. Li HY, Wang RG, Hu HL, Liu WB, Appl. Surf. Sci., 255(5), 1894 (2008)
  24. Ochi S, Takagi H, Niki R, High Perform. Struct. Compos., 59, 117 (2002)
  25. Wang J, Dong J, Zhang J, Zhu B, Cui D, J. Polym. Eng., 38, 157 (2017)
  26. Kabir MM, Wang H, Lau KT, Cardona F, Aravinthan T, Composites Part B, 43, 159 (2012)