Polymer(Korea), Vol.42, No.6, 1046-1051, November, 2018
아크릴 올리고머 개질 산화 그래핀에 의한 고분자 복합재료의 전기특성 향상
Improvement of Electrical Properties of Polymer Composites by Acrylic Oligomer Modified Graphene Oxide
E-mail:
초록
그래핀은 우수한 전기적, 기계적 및 차단 특성으로 인해 다양한 고분자 복합재에 사용되지만 혼화성을 향상 시켜야 된다. 반면, 산화 그래핀은 에폭시, 하이드록실 및 카복실기와 같은 다양한 관능기를 갖고 있어 여러 고분자 들과의 혼화성이 우수하다. 고분자 소재의 물성 뿐만 아니라 가공성 및 제품 품질을 향상시키기 위하여 일반적으로 다양한 첨가제들이 사용되고 있다. N-바이닐피롤리돈 및 부틸아크릴레이트로 합성한 올리고머를 사용하여 산화 그래핀을 개질하여 전기적 특성을 향상시키는 첨가제로 적용하였다. 아크릴 올리고머로 개질된 산화 그래핀/아크릴 고분자 복합재료에서는 표면전기저항이 크게 감소하였다.
Graphene needs improvement in compatibility with polymers although it has excellent electrical, mechanical, and barrier properties. On the other hand, graphene oxide has various functional groups such as epoxide, hydroxyl, and carboxyl groups which contribute to the improved compatibility with polymers. Various additives are generally used to improve processability and product quality as well as physical properties of polymers. Graphene oxide was modified with the acrylic oligomer, which was synthesized with butyl acrylate and N-vinylpyrrolidone. The modified graphene oxide was used as an additive for improvement of electrical properties. The acrylic oligomer modified graphene oxide showed the significant decrease in the surface electric resistance of acrylic polymer composites.
- Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
- Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS, Nature, 442, 282 (2006)
- Tan YW, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang EH, Das Sarma S, Stormer HL, Kim P, Phys. Rev. Lett., 99, 246803 (2007)
- Cho S, Fuhrer MS, Phys. Rev. B, 77, 081402 (2008)
- Martin J, Akerman N, Ulbricht G, Lohmann T, Smet JH, von Klitzing K, Yacoby A, Nat. Phys., 4, 144 (2008)
- Wehling TO, Novoselov KS, Morozov SV, Vdovin EE, Katsnelson MI, Geim AK, Lichtenstein AI, Nano Lett., 8, 173 (2008)
- Pereira VM, Guinea F, dos Santos J, Peres NMR, Neto AHC, Phys. Rev. Lett., 96, 036801 (2006)
- Cheianov VV, Fal’ko VI, Altshuler BL, Aleiner IL, Phys. Rev. Lett., 99, 176801 (2007)
- Fogler MM, Novikov DS, Shklovskii BI, Phys. Rev. B, 76, 233402 (2007)
- de Juan F, Cortijo A, Vozmediano MAH, Phys. Rev. B, 76, 165409 (2007)
- Guinea F, Katsnelson MI, Vozmediano MAH, Phys. Rev. B, 77, 075422 (2008)
- Dora B, Ziegler K, Thalmeier P, Phys. Rev. B, 77, 115422 (2008)
- Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K, Nano Lett., 7, 3499 (2007)
- Wu XS, Li XB, Song ZM, Berger C, de Heer WA, Phys. Rev. Lett., 98, 136801 (2007)
- Gilje S, Han S, Wang M, Wang KL, Kaner RB, Nano Lett., 7, 3394 (2007)
- McAllister MJ, Lio JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Caro R, Prud’homme RK, Aksay IA, Chem. Mater., 19, 4396 (2007)
- Eda G, Fanchini G, Chhowalla M, Nat. Nanotechnol., 3(5), 270 (2008)
- Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y, ACS Nano, 2, 463 (2008)
- Wu XS, Sprinkle M, Li XB, Ming F, Berger C, de Heer WA, Phys. Rev. Lett., 101, 026801 (2008)
- Li D, Muller MB, Gilje S, Kaner RB, Wallace GG, Nat. Nanotechnol., 3(2), 101 (2008)
- Wang X, Zhi LJ, Mullen K, Nano Lett., 8, 323 (2008)
- Boukhvalov DW, Katsnelson MI, J. Am. Chem. Soc., 130(32), 10697 (2008)
- Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558 (2007)
- McAllister MJ, Li J, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA, Chem. Mater., 19, 4396 (2007)
- Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS, J. Mater. Chem., 16, 155 (2006)
- Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC, J. Am. Chem. Soc., 128(24), 7720 (2006)
- Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D, Dekany I, Chem. Mater., 18, 2740 (2006)
- Li D, Muller MB, Gilje S, Kaner RB, Wallace GG, Nat. Nanotechnol., 3(2), 101 (2008)
- Wang G, Shen X, Wang B, Yao J, Park J, Carbon, 47, 1359 (2009)
- Bose S, Kuila T, Uddin ME, Kim NH, Lau AKT, Lee JH, Polymer, 51(25), 5921 (2010)