Polymer(Korea), Vol.42, No.6, 1077-1084, November, 2018
난연성 Poly(acrylonitrile-co-vinylidene chloride) 공중합체의 중합 및 습식방사: Vinylidene Chloride 함량의 영향
Polymerization and Wet-spinning of Flame Retardant Poly(acrylonitrile-co-vinylidene chloride) Copolymers: Effect of Vinylidene Chloride Content
E-mail:
초록
본 연구는 난연성 섬유 소재의 개발을 위한 연구로 다양한 조성의 poly(acrylonitrile-co-vinylidene chloride) (PANVDC) 공중합체를 레독스 개시제를 이용한 단량체 연속 공급방식의 수계 현탁중합법으로 중합하고 이를 습식방사하였다. PANVDC 공중합체의 중합 전환율은 79.7% 이상으로 높은 중합 수율을 보였으며, 중량 평균 분자량은 150000 g/mol 이상이었다. PANVDC 공중합체의 조성은 1H NMR 분석과 연소 이온 크로마토그래피를 이용하여 결정하는 방법을 제시하였으며, 결정된 PANVDC 공중합체 내의 단량체 조성비는 투입한 단량체 몰비와 유사하였다. 중합된 PANVDC 공중합체는 지속 연소 시간이 짧은 자기 소화성을 가지고 있어 poly(acrylonitrile-co-vinyl chloride) 보다는 우수한 난연 특성을 가짐을 확인하였다. PANVDC 공중합체의 습식방사는 dimethyl sulfoxide(DMSO)를 방사용매로 DMSO/물(50/50 w/w)을 응고액으로 이용하여 실시하였다. PANVDC(AN/VDC=7/3 mol/mol) 섬유는 상업적으로도 사용가능할 정도의 인장강도를 보였으나 PANVDC(AN/VDC=6/4 mol/mol)와 PANVDC(AN/VDC=5/5 mol/mol) 섬유는 응고 후 생성된 내부의 많은 기공들로 인하여 매우 낮은 인장강도를 보였다.
To develop flame retardant fibers, poly(acrylonitrile-co-vinylidene chloride) (PANVDC) copolymers of various compositions were polymerized by aqueous suspension polymerization using a redox initiator and their fibers were wetspun. The polymerization conversions of PANVDC copolymers were higher than 79.7% and their weight-average molecular weights were higher than 150000 g/mol. The composition analysis of the PANVDC copolymers using 1H NMR spectroscopy and combustion ion chromatography was suggested, and the monomer composition ratio determined in the PANVDC copolymers was similar to the molar feed ratio of monomers. The PANVDC copolymers had self-extinguishing properties and therefore had better flame retardant properties than poly(acrylonitrile-co-vinyl chloride). PANVDC fibers were wet-spun using dimethyl sulfoxide (DMSO) as a spinning solvent and DMSO/water (50/50 w/w) as a coagulating solution. PANVDC (AN/VDC=7/3 mol/mol) fiber exhibited commercial grade tensile strength, but PANVDC (AN/VDC=6/4 mol/mol) and PANVDC (AN/VDC=5/5 mol/mol) fibers showed very low tensile strength due to the internal pores generated during coagulation process.
Keywords:poly(acrylonitrile-co-vinylidene chloride);flame retardant;suspension polymerization;wet spinning process
- Tsai JS, J. Mater. Sci., 28, 1161 (1993)
- Mark HF, Atlas SM, Shalaby SW, Pearce EM, Flameretardant polymeric materials, Springer Science & Business Media, New York, p 1 (2012).
- Price D, Horrocks AR, Handbook of fire resistant textiles, Elsevier, Philadelphia, p 3 (2013).
- Horrocks AR, Advances in fire retardant materials, Elsevier, New York, p 159 (2008).
- Bajaj P, Agrawal AK, Dhand A, Kasturia N & Hansraj, J. Macromol. Sci., Part C: Polym. Rev., 40, 309 (2000).
- Morgan AB, Gilman JW, Fire Mater., 37, 259 (2013)
- Tsai JS, J. Mater. Sci. Lett., 11, 953 (1992)
- Tsai JS, J. Mater. Sci. Lett., 12, 548 (1993)
- Tsai JS, Ho DL, Hung SC, J. Mater. Sci. Lett., 10, 881 (1991)
- Kirk-Othmer, Encyclopedia of Chemical Technology, John Wiley & Sons, New York, vol 24, p 882 (1997).
- Fleming R, Pardini LC, Alves N, Garcia E, Junior CB, Polimeros, 24, 259 (2014)
- Odian G, Principles of polymerization, John Wiley & Sons, New Jersey, 2004.
- Lewis FM, Mayo FR, Hulse WR, J. Am. Chem. Soc., 67, 1701 (1945)
- Marker L, Sweeting OJ, Wepsic JG, J. Polym. Sci., 57, 855 (1962)
- Brooks BW, Chem. Eng. Technol., 33(11), 1737 (2010)
- Masson J, Acrylic fiber technology and applications, CRC Press, Boca Raton, 1995.
- Tsai JS, Ho DL, Hung SC, J. Mater. Sci. Lett., 10, 881 (1991)
- Grassie N, McGuchan R, Eur. Polym. J., 9, 507 (1973)
- Joesten BL, Johnston NW, J. Macromol. Sci. Chem., 8, 83 (1974)
- Lee S, Park SS, Oh YS, J. Kor. Fiber Soc., 36, 639 (1999)
- Morris EA, Weisenberger MC, Rice GW, Fibers, 3, 560 (2015)
- Yu SM, Oh HJ, Hwang SK, Chung YS, Hwang HY, Kim SS, Compos. Res., 26, 123 (2013)
- Dong X, Lu C, Zhou P, Zhang S, Wang L, Li D, RSC Adv., 5, 44259 (2015)