화학공학소재연구정보센터
Applied Mathematics and Optimization, Vol.78, No.2, 379-401, 2018
Boundary Optimal Control for a Frictional Contact Problem with Normal Compliance
We consider the contact between an elastic body and a deformable foundation. Firstly, we introduce a mathematical model for this phenomenon by means of a normal compliance contact condition associated with a friction law. Then, we propose a variational formulation of the model in a form of a quasi-variational inequality governed by a non-differentiable functional and we briefly discuss its well-possedness. Nextly, we address an optimal control problem related to this model in order to led the displacement field as close as possible to a given target by acting with a localized boundary control. By using some mollifiers of the normal compliance functions, we introduce a regularized model which allows us to establish an optimality condition. Finally, by means of asymptotic analysis tools, we show that the solutions of the regularized optimal control problems converge to a solution of the initial optimal control problem.