화학공학소재연구정보센터
Journal of Polymer Science Part B: Polymer Physics, Vol.35, No.6, 993-1007, 1997
Water Sorption and Transport in Blends of Polyethyloxazoline and Polyethersulfone
Water sorption and transport properties for a series of homogeneous blends of hydrophobic polyethersulfone and hydrophilic polyethyloxazoline are reported. Only blends that remained homogeneous after exposure to liquid water were studied in detail. Equilibrium solubility of water in the blend films increases with increasing hydrophilic polymer content. For all materials, equilibrium sorption isotherms show dual-mode behavior at low water vapor activities and swelling behavior at high activities. The sorption/desorption kinetics for PES are generally Fickian, but two-stage behavior is evident in blends containing 10 and 20% polyethyloxazoline. Diffusion coefficients decrease with increasing polyethyloxazoline content, owing to a decrease in the fractional free volume. For all materials, the diffusion coefficient shows a positive dependence on water vapor activity or concentration due to plasticization of the material by high levels of sorbed water, but it becomes a greater function of activity as the composition of hydrophilic polymer in the blend is increased. Since the decrease in the diffusion coefficient is greater than the increase in the solubility coefficient, the permeability coefficient decreases with increasing hydrophilic polymer content.