화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.68, 267-273, December, 2018
Hydrothermal liquefaction of Chlorella vulgaris: Effect of reaction temperature and time on energy recovery and nutrient recovery
E-mail:
Hydrothermal liquefaction of Chlorella vulgaris feedstock containing 80% (w/w) water was conducted in a batch reactor as a function of temperature (300, 325 and 350 °C) and reaction times (5, 10 and 30 min). The biocrude yield, elemental composition and higher heating value obtained for various reaction conditions helped to predict the optimum conditions for maximizing energy recovery. To optimize the recovery of inorganic nutrients, we further investigated the effect of reaction conditions on the ammonium (NH4+), phosphate (PO43-), nitrate (NO3-) and nitrite (NO2-) concentrations in the aqueous phase. A maximum energy recovery of 78% was obtained at 350 °C and 5 min, with a high energy density of 34.3 MJ/kg and lower contents of oxygen. For the recovery of inorganic nutrients, shorter reaction times achieved higher phosphorus recovery, with maximum recovery being 53% at 350 °C and 5 min. Our results indicate that the reaction condition of 350 °C for 5 min was optimal for maximizing energy recovery with improved quality, at the same time achieving a high phosphorus recovery.
  1. British Petroleum, BP statistical review of world energy. https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf.
  2. Milleer G, Spoolman S, Environmental Science: Problems, Connections and Solutions, twelfth ed., Thomson Learning Inc., Califonia, 2008.
  3. Patel N, J. Recent Res. Eng. Technol., 1 (2014)
  4. Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC, Curr. Opin. Biotechnol., 19(3), 235 (2008)
  5. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B, BioEnergy Res., 1(1), 20 (2008)
  6. Pirt SJ, New Phytol., 102(1), 3 (1986)
  7. Demirbas A, Demirbas MF, Algae Energy: Algae as a New Source of Biodiesel, Springer, London, 2010.
  8. Georgianna DR, Mayfield SP, Nature, 488(7411), 329 (2012)
  9. Gouveia L, Microalgae as a Feedstock for Biofuels, Springer, Berlin Heidelberg, pp.1 2011.
  10. Deng X, Li Y, Fei X, Afr. J. Microbiol. Res., 3(13), 1008 (2009)
  11. Harun R, Danquah MK, Forde GM, J. Chem. Technol. Biotechnol., 85(2), 199 (2010)
  12. John RP, Anisha GS, Nampoothiri KM, Pandey A, Bioresour. Technol., 102(1), 186 (2011)
  13. Miao XL, Wu QY, Bioresour. Technol., 97(6), 841 (2006)
  14. Ehimen EA, Sun ZF, Carrington CG, Fuel, 89(3), 677 (2010)
  15. Hidalgo P, Toro C, Navia R, Rev. Environ. Sci. Bio/Technol., 12(2), 179 (2013)
  16. Miao X, Wu Q, Yang C, J. Anal. Appl. Pyrolysis, 71(2), 855 (2004)
  17. Harman-Ware AE, Morgan T, Wilson M, Crocker M, Zhang J, Liu KL, Stork J, Debolt S, Renew. Energy, 60, 625 (2013)
  18. Elliott DC, Hart TR, Schmidt AJ, Neuenschwander GG, Rotness LJ, Olarte MV, Holladay JE, Algal Res., 2(4), 445 (2013)
  19. Christensen PS, Peng G, Vogel F, Iversen BB, Energy Fuels, 28(9), 5792 (2014)
  20. Jena U, et al., Biotechnol. Biofuels, 8(1), 167 (2015)
  21. He Z, et al., Algal Res., 33, 8 (2018)
  22. Liang S, et al., Environ. Prog. Sustain. Energy, 36(3), 781 (2017)
  23. Kumar G, Shobana S, Chen WH, Bach QV, Kim SH, Atabani AE, Chang JS, Green Chem., 19(1), 44 (2017)
  24. Shuping Z, Yulong W, Mingde Y, Kaleem I, Chun L, J. Tong, Energy, 35(12), 5406 (2010)
  25. Toor SS, Rosendahl L, Rudolf A, Energy, 36(5), 2328 (2011)
  26. Tian C, Li B, Liu Z, Zhang Y, Lu H, Renew. Sust. Energ. Rev., 38, 933 (2014)
  27. Biller P, Ross AB, Skill SC, Lea-Langton A, Balasundaram B, Hall C, Riley R, Llewellyn CA, Algal Res., 1(1), 70 (2012)
  28. Folch J, Lees M, Sloane-Stanley GH, J. Biol. Chem., 226(1), 497 (1957)
  29. Mariotti F, Tome D, Mirand PP, Crit. Rev. Food Sci. Nutr., 48(2), 177 (2008)
  30. Safi C, Charton M, Pignolet O, Silvestre F, Vaca-Garcia C, Pontalier PY, J. Appl. Phycol., 25(2), 523 (2013)
  31. Channiwala SA, Parikh PP, Fuel, 81(8), 1051 (2002)
  32. Valdez PJ, Nelson MC, Wang HY, Lin XXNN, Savage PE, Biomass Bioenerg., 46, 317 (2012)
  33. Jena U, Das KC, Kastner JR, Bioresour. Technol., 102(10), 6221 (2011)
  34. Biller P, Ross AB, Bioresour. Technol., 102(1), 215 (2011)
  35. Eboibi BE, Lewis DM, Ashman PJ, Chinnasamy S, Bioresour. Technol., 170, 20 (2014)
  36. Yu G, Zhang Y, Schideman L, Funk T, Wang Z, Energy Environ. Sci., 4(11), 4587 (2011)
  37. Vardon DR, Sharma BK, Scott J, Yu G, Wang ZC, Schideman L, Zhang YH, Strathmann TJ, Bioresour. Technol., 102(17), 8295 (2011)
  38. Ruttenberg KC, Treatise Geochem., 8, 585 (2003)