Chinese Journal of Chemical Engineering, Vol.26, No.6, 1321-1329, 2018
Modeling and optimization of the cyclic steady state operation of adsorptive reactors
Adsorptive reactors (AR), in which an adsorptive functionality is incorporated into the catalytic reactors, offer enhanced performance over their conventional counterparts due to the effective manipulation of concentration and temperature profiles. The operation of these attractive reactors is, however, inherently unsteady state, complicating the design and operation of such sorption-enhanced processes. In order to capture, comprehend and capitalize upon the rich dynamic texture of adsorptive reactors, it is necessary to employ cyclic steady state algorithms describing the entire reaction-adsorption/desorption cycle. The stability of this cyclic steady state is of great importance for the design and operation of adsorptive reactors. In this paper, the cyclic steady state of previously proposed novel adsorptive reactor designs has been calculated and then optimized to give maximum space-time yields. The results obtained revealed unambiguously that an improvement potential of up to multifold level could be attained under the optimized cyclic steady state conditions. This additional improvement resulted from the reduction of the regeneration time well below the reaction-adsorption time, which means, in turn, more space-time yield. (C) 2017 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.
Keywords:Adsorptive reactors;Multifunctional reactors;Cyclic steady state;Claus reaction;Deacon reaction