Computers & Chemical Engineering, Vol.116, 468-487, 2018
Municipal solid waste to liquid transportation fuels - Part III: An optimization-based nationwide supply chain management framework
An optimization-based supply chain management framework for municipal solid waste (MSW) to liquid transportation fuels (WTL) processes is presented. First, a thorough analysis of landfill operations and annual amounts of MSW that are deposited across the contiguous United States is conducted and compared with similar studies. A quantitative supply chain framework that simultaneously accounts for the upstream and downstream WTL value chain operations is then presented. A large-scale mixed-integer linear optimization model that captures the interactions among MSW feedstock availabilities and locations, WTL refinery locations, and product delivery locations and demand capacities is described. The model is solved for both the nationwide and statewide WTL supply chains across numerous case studies. The results of the framework yield insights into the strategic placement of WTL refineries in the United States as well as topological information on the feedstock and product flows. The results suggest that large-scale WTL supply chains can be competitive, with breakeven oil prices ranging between $64-$77 per barrel. (C) 2017 Elsevier Ltd. All rights reserved.
Keywords:Supply chain management framework;Waste-to-liquids process;Mixed integer linear optimization;Transportation fuels