Current Applied Physics, Vol.18, No.12, 1546-1552, 2018
Synthesis and characterization of silanized-SiO2/povidone nanocomposite as a gate insulator: The influence of Si semiconductor film type on the interface traps by deconvolution of Si-2s
The polymer nanocomposite as a gate dielectric film was prepared via sol-gel method. The formation of cross-linked structure among nanofillers and polymer matrix was proved by Fourier transform infrared spectroscopy (FT-IR). Differential thermal analysis (DTA) results showed significant increase in the thermal stability of the nanocomposite with respect to that of pure polymer. The nanocomposite films deposited on the p- and n-type Si substrates formed very smooth surface with rms roughness of 0.045 and 0.058 nm respectively. Deconvoluted Si-2s spectra revealed the domination of the Si-OH hydrogen bonds and Si-O-Si covalence bonds in the structure of the nanocomposite film deposited on the p- and n-type Si semiconductor layers respectively. The fabricated n-channel field-effect-transistor (FET) showed the low threshold voltage and leakage currents because of the stronger connection between the nanocomposite and n-type Si substrate. Whereas, dominated hydroxyl groups in the nanocomposite dielectric film deposited on the p-type Si substrate increased trap states in the interface, led to the drop of FET operation.