화학공학소재연구정보센터
Energy, Vol.155, 705-720, 2018
Forecasting energy demand, wind generation and carbon dioxide emissions in Ireland using evolutionary neural networks
The ability to accurately predict future power demands, power available from renewable resources and the environmental impact of power generation is vital to the energy sector for the purposes of planning, scheduling and policy making. Machine learning techniques, neural networks in particular, have proven to be very effective methods for addressing these challenging forecasting problems. This research utilizes the powerful evolutionary optimisation algorithm, covariance matrix adaptation evolutionary strategy, as a means of training neural networks to predict short term power demand, wind power generation and carbon dioxide intensity levels in Ireland over a two month period. The network is trained over one month and then tested over the following month. A neural network trained with covariance matrix adaptation evolutionary strategy performs very competitively when compared to other state of the art prediction methods when forecasting Ireland's energy needs, providing fast convergence, more accurate predictions and robust performance. The covariance matrix adaptation evolutionary strategy trained network also gives accurate predictions when predicting multiple time steps into the future. (C) 2018 Elsevier Ltd. All rights reserved.