화학공학소재연구정보센터
Fuel, Vol.233, 94-102, 2018
Methane hydrate formation in mixed-size porous media with gas circulation: Effects of sediment properties on gas consumption, hydrate saturation and rate constant
Being a promising potential source for natural gas, methane hydrate (MH) is attracting increasing interest due to its great amount and diverse geographic distribution. The formation of MH is significantly influenced by the properties of sediment media such as porosity and permeability. In this study, in order to have a better understanding on the relationship between MH formation behavior and sediment properties, as well as to synthesize representative hydrate samples, MH was formed in six different sets of mixed-size porous media composed of clay, silt and fine sand, with saline water and circulating methane gas to reflect MH formation with free methane flux in marine sediment. The sediment composition, experimental pressure (15 MPa) and temperature (286.2 K) were chosen based on the SH2 drilling site in the Shenhu area in South China Sea. A two-stage growing behavior was observed for all systems. The gas consumption and hydrate formation rate exhibited positive relations with the permeability and porosity of the sediments. Furthermore, hydrates were found to be preferably formed in the bottom layer of the sediment, which could be attributed to the drastic drop of permeability at the early stage of hydrate formation. Lastly, the hydrate formation rate constant was calculated based on the intrinsic kinetic model and found to be a good reflection of the mass transfer properties of different porous media.