International Journal of Hydrogen Energy, Vol.43, No.44, 20192-20202, 2018
The performance assessment of a combined organic Rankine-vapor compression refrigeration cycle aided hydrogen liquefaction
In this study, the performance of the combined cooling cycle with the Organic Rankine power cycle, which provides cooling of the hydrogen at the compressor inlet which compresses the constant temperature in the Claude cycle used for hydrogen liquefaction, on the system is examined. The Organic Rankine combined cooling cycle was considered to be using a geothermal source with a flow rate of 120 kg/s at a temperature of 200 degrees C. The first and second law performance evaluations of the whole system were made depending on the heat energy at different levels taken from the geothermal source. The thermodynamic analysis of the equipment making up the system has been done in detail. The temperature values at which the hydrogen can be effectively cooled were determined in the presented combined system. The efficiency coefficient of the total system was calculated based on varying pre-cooling values. As a result of the study, it was determined that cold entry of hydrogen into the Claude cycle reduced the energy consumption required for liquefaction. Amount of hydrogen cooled to specified temperature increase by increase in mass flow of geothermal water and its temperature. Liquefaction cost is calculated to be 0.995 $/kg H-2 and electricity produced by itself is calculated to be 0.025 $/kWh by the new model of liquefaction system. Cost of the liquefaction in the proposed system is about 39.7% lower than direct value of hydrogen liquefaction of 1.650 $/kg given in the literature. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.