화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.43, No.30, 13962-13974, 2018
Parametric study of pressure swing adsorption cycle for hydrogen purification using Cu-BTC
Metal organic framework (MOF), for example Cu-BTC, has the characteristics of structure adversity, high pore volume, large surface area and strong selectivity. It is being considered as a new adsorbent in the field of pressure swing adsorption (PSA). A model describing hydrogen mixture flow, heat and mass transfer with multi-component adsorption is developed for predicting breakthrough curves and performance of PSA cycles in the hydrogen purification system using Cu-BTC as adsorbent. The model is implemented on Aspen platform and validated by experiments. Hydrogen purification performances (purity, recovery, productivity) were evaluated, and parametric study on the performance of hydrogen purification has been performed. The results show that the simulated mole fractions, temperature and pressure in the PSA cycles agree with the experiments very well. In general, the variation trend of hydrogen purity is opposite to that of recovery and productivity. As the parametric study shows, within a certain range, higher adsorption pressure, shorter feeding time and lower feeding flow rate lead to higher hydrogen purity, then lower recovery and productivity. Parametric studies help to effectively improve hydrogen purification performance in the Cu-BTC adsorption bed. Furthermore, a multi objective algorithm is needed to optimize the PSA process. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.