화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.12, 2421-2429, December, 2018
Effects of the gold nanoparticles including different thiol functional groups on the performances of glucose-oxidase-based glucose sensing devices
E-mail:
Thiol-based self-assembled anchor linked to glucose oxidase (GOx) and gold nanoparticle (GNP) cluster is suggested to enhance the performance of glucose biosensor. By the adoption of thiol-based anchors, the activity of biocatalyst consisting of GOx, GNP, polyethyleneimine (PEI) and carbon nanotube (CNT) is improved because they play a crucial role in preventing the leaching out of GOx. They also promote electron collection and transfer, and this is due to a strong hydrophobic interaction between the active site of GOx and the aromatic ring of anchor, while the effect is optimized with the use of thiophenol anchor due to its simple configuration. Based on that, it is quantified that by the adoption of thiophenol as anchor, the current density of flavin adenine dinucleotide (FAD) redox reaction increases about 42%, electron transfer rate constant (ks) is 9.1±0.1 s-1 and the value is 26% higher than that of catalyst that does not use the anchor structure.
  1. Inamuddin, Beenish, Naushad M, Korean J. Chem. Eng., 33(1), 120 (2016)
  2. Son JW, Hwnag JS, Lee DH, Khan MS, Jo YH, Lee KW, Park CH, Chavan S, Seo YM, Choi YH, Kim SS, Kim DS, Na DK, Choi JH, Korean J. Chem. Eng., 35(3), 805 (2018)
  3. Wang J, Chem. Rev., 108(2), 814 (2008)
  4. World Health Organization (WHO) of United Nations (UN). Global Report on Diabetes sheet. Available online: http://www.who.int/diabetes/global-report/WHD16-press-release-EN_3.pdf(Accessed on May 25th, 2018).
  5. Chung Y, Kwon Y, Korean Chem. Eng. Res., 53(6), 802 (2015)
  6. Barton SC, Gallaway J, Atanassov P, Chem. Rev., 104(10), 4867 (2004)
  7. Lide DR, CRC Handbook of Chemistry and Physics, 81st Ed., CRC Press, Boca Raton, FL (2000).
  8. Chung Y, Ahn Y, Kim DH, Kwon Y, J. Power Sources, 337, 152 (2017)
  9. Guiseppi-Elie A, Lei C, Baughman RH, Nanotechnology, 13, 559 (2002)
  10. Liu Y, Zhao Y, Sun B, Chen C, Accounts Chem. Res., 46, 702 (2013)
  11. Chung Y, Hyun KH, Kwon Y, Nanoscale, 8, 1161 (2016)
  12. Hyun KH, Han SW, Koh WG, Kwon Y, J. Power Sources, 286, 197 (2015)
  13. Chung Y, Ahn Y, Christwardana M, Kim H, Kwon Y, Nanoscale, 8, 9201 (2016)
  14. Christwardana M, Enzyme Microb. Technol., 106, 1 (2017)
  15. McLean JA, Stumpo KA, Russell DH, J. Am. Chem. Soc., 127(15), 5304 (2005)
  16. Nativo P, Prior IA, Brust M, ACS Nano, 2, 1639 (2008)
  17. Christwardana M, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 3009 (2017)
  18. Christwardana M, Kim KJ, Kwon Y, Sci. Rep., 6, 30128 (2016)
  19. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y, Biosens. Bioelectron., 25, 901 (2009)
  20. Laviron E, J. Electroanal. Chem., 101, 19 (1979)
  21. Chung Y, Christwardana M, Tannia DC, Kim KJ, Kwon Y, J. Power Sources, 360, 172 (2017)
  22. Christwardana M, Chung Y, Kwon Y, NPG Asia Mater., 9(6), e386 (2017)
  23. Christwardana M, Chung Y, Kwon Y, Nanoscale, 9, 1993 (2017)
  24. Wooten M, Karra S, Zhang M, Gorski W, Anal. Chem., 86, 752 (2014)
  25. Christwardana M, Kwon Y, J. Power Sources, 299, 604 (2015)
  26. Leskovac V, Trivic S, Wohlfahrt G, Kandrac J, Pericin D, Int. J. Biochem. Cell Biol., 37, 731 (2005)
  27. Wohlfahrt G, Witt S, Hendle J, Schomburg D, Kalisz HM, Hecht HJ, Acta. Cryst. D, 55, 969 (1999)
  28. Wohlfahrt G, Trivic S, Zeremski J, Pericin D, Leskovac V, Mol. Cell. Biochem., 260, 69 (2004)
  29. Ji J, Christwardana M, Chung Y, Kwon Y, Trans. Korean Hydrog. New Energy Soc., 27, 526 (2016)
  30. Christwardana M, Kim DH, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 180 (2018)
  31. Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916 (2017)