화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.28, No.11, 659-662, November, 2018
InAs 양자점 형성 방법이 양자점 적외선 소자 특성에 미치는 효과
Effect of Growth Methods of InAs Quntum Dots on Infrared Photodetector Properties
E-mail:
We report the properties of infrared photodetectors based on two kinds of quantum dots(QDs): i) 2.0 ML InAs QDs by the Stranski-Krastanov growth mode(SK QDs) and ii) sub-monolayer QDs by 4 × [0.3 ML/1 nm In0.15Ga0.85As] deposition(SML QDs). The QD infrared photodetector(QDIP) structure of n+-n-(QDs)-n+ is epitaxially grown on GaAs (100) wafers using molecular-beam epitaxy. Both the bottom and top contact GaAs layers are Si doped at 2 × 1018/cm3. The QD layers are grown with Si doping of 2 × 1017/cm3 and capped by an In0.15Ga0.85As layer at 495 °C. The photoluminescence peak(1.24 eV) of the SML QDIP is blue-shifted with respect to that (1.04 eV) of SK QDIPs, suggesting that the electron ground state of SML QDIP is higher than that of the SK QDIP. As a result, the photoresponse regime(~9-14 μm) of the SML QDIP is longer than that (~6-12 μm) of the SK QDIP. The dark current of the SML QDIP is two orders of magnitude smaller value than that of the SK QDIP because of the inserted Al0.08Ga0.92As layer.
  1. Yuan H, Apgar G, Kim J, Laquindanum J, Nalavade V, Beer P, Kimchi J, Wong T, Proc. SPIE, 6940, 69403C (2008)
  2. Norton P, Campbell J III, Horn S, Reago D, Proc. SPIE, 4130, 226 (2000)
  3. Horn S, Norton P, Cincotta T, Stoltz AJ, Benson JD, Perconti P, Campbell J III, Proc. SPIE, 5074, 44 (2003)
  4. Radford WA, Patten EA, King DF, Pierce GK, Vodicka J, Goetz P, Venzor G, Smith EP, Graham R, Johnson SM, Roth J, Nosho B, Jensen J, Proc. SPIE, 5783, 325 (2005)
  5. Rogalski A, Prog. Quantum Electron.,., 27, 59 (2003)
  6. Levine BF, J. Appl. Phys., 74, R1 (1993)
  7. Madhukar A, Campbell J, Kim ET, Chen ZH, Ye J, in Semiconductor Nanostructures for Optoelectronics, Artech House, Inc., (2004).
  8. Kim ET, Chen ZH, Madhukar A, Appl. Phys. Lett., 79, 3341 (2001)
  9. Ye Z, Campbell J, Chen ZH, Kim ET, Madhukar A, IEEE J. Quantum Electron., 38, 1234 (2002)
  10. Kim ET, Chen ZH, Ho M, Madhukar A, J. Vac. Sci. Technol. B, 20(3), 1188 (2002)
  11. Lee SJ, Kim JO, Kim YG, Noh SK, Kyu YH, Choi SM, Choe JW, J. Korean Phys. Soc., 46, 1396 (2005)
  12. Kim JO, Lee SJ, Noh SK, Ryu YH, Choi SM, Choe JW, J. Korean Phys. Soc., 47, 838 (2005)
  13. Ting DZY, Bandara SV, Gunapala SD, Mumolo JM, Keo SA, Hill CJ, Liu JK, Blazejewski ER, Rafol SB, Chang YC, Appl. Phys. Lett., 94, 111107 (2009)
  14. Kim JO, Sengupta S, Barve AV, Sharma YD, Adhikary S, Lee SJ, Noh SK, Allen MS, Allen JW, Chakrabarti S, Krishna S, Appl. Phys. Lett., 102, 011131 (2013)