Journal of Catalysis, Vol.365, 153-162, 2018
Towards a greener approach for the preparation of highly active gold/carbon catalyst for the hydrochlorination of ethyne
Gold on activated carbon (Au/AC) materials are promising alternative catalysts for ethyne hydrochlorination. The preparation of active, stable Au/AC catalysts without aqua regia for ethyne hydrochlorination remains a significant challenge. A novel catalyst preparation protocol involving impregnation using a H2O2/HCl mixture is established for highly active Au/AC catalysts comprising primarily of single-site cationic Au species, as identified by systematic X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (TPR) analyses and transmission electron microscopy (TEM) imaging. In addition, evaluation of the Au-C interface by temperature-programmed desorption (TAD) analyses showed that the oxidation of activated carbon by the H2O2/HCl mixture, which creates surface oxygen-containing functional groups (SOGs), is a crucial step for the formation of active Au/AC catalysts. The structure determination and comprehensive experimental evidence allow density functional theory (DFT) to predict that single-site cationic AuCl species stabilized by SOGs via -O- linkages are efficient active sites for Au-catalyzed ethyne hydrochlorination. In addition, these catalysts can be reused for several times with negligible changes in performance after treatment with the H2O2/HCl mixture. The H2O2/HCl mixture is thus envisioned as a viable, green alternative to toxic aqua regia for the preparation of Au/AC catalysts for ethyne hydrochlorination. (C) 2018 Elsevier Inc. All rights reserved.