Journal of Physical Chemistry B, Vol.122, No.38, 8812-8818, 2018
DNA Confined in a Nanodroplet: A Molecular Dynamics Study
As a major genetic material, the configuration and the mechanical properties of a double-stranded DNA (dsDNA) molecule in confinement are crucial for the application of nanotechnology and biological engineering. In the present paper, molecular dynamics simulation is utilized to study the configuration of dsDNA in a nanodroplet on a graphene substrate. The results show that the semiflexible dsDNA molecule changes its configuration with radius of gyration (R-g) of a few nanometers because of the confined space, that is, the R-g of the dsDNA molecule decreases with the reduction of the nanodroplet size. In comparison, the dsDNA in the bulk usually has a persistent length of tens of nanometers. Especially, if the nanodroplet is small enough, the dsDNA molecule might form a loop structure inside. The dsDNA molecule affects the wetting properties of the graphene substrate. It is found that the graphene becomes more hydrophilic in smaller systems containing the dsDNA molecule, whereas for larger droplets, the changes of the contact angles are not significant with the presence of dsDNA. Moreover, the results indicate that for larger droplets, the line tension of the droplet containing DNA is positive and greater than that without DNA; for smaller droplets, the line tension becomes negative because the dsDNA is compressed and bent in the confinement, and has the potential to expand outwards. The worm-like chain model is used to study the bending energy of a dsDNA molecule in a droplet. The results address that the bending energy of the non-loop-structured dsDNA decreases as the droplet becomes larger, and it is larger than that of loop-structured dsDNA, as the loop structure efficiently prevents the DNA from bending in the vertical direction.