화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.140, No.37, 11680-11685, 2018
In Situ Kinetic and Thermodynamic Growth Control of Au-Pd Core-Shell Nanoparticles
One-pot wet-chemical synthesis is a simple way to obtain nanoparticles (NPs) with a well-defined shape and composition. However, achieving good control over NP synthesis would require a comprehensive understanding of the mechanisms of NP formation, something that is challenging to obtain experimentally. Here, we study the formation of gold (Au) core palladium (Pd) shell NPs under kinetically and thermodynamically controlled reaction conditions using in situ liquid cell transmission electron microscopy (TEM). By controlling the reaction temperature, we demonstrate that it is possible to tune the shape of Au nanorods to Au Pd arrow headed structures or to cuboidal core shell NPs. Our in situ studies show that the reaction temperature can switch the Pd shell growth between the kinetically and thermodynamically dominant regimes. The mechanistic insights reported here reveal how the reaction temperature affects the packing of the capping agents and how the facet selection of depositing shell atoms drives the shell formation under different kinetic conditions, which is useful for synthesizing NPs with greater design flexibility in shape and elemental composition for various technological applications.