화학공학소재연구정보센터
Langmuir, Vol.34, No.47, 14347-14357, 2018
Nonionic Glycolipids for Chromium Flotation- and Emulsion (W/O and O/W)-Based Bioactive Release
Biosourced surfactants are endeavored as a green alternative to biosurfactants and petrochemical surfactants having industrial utilization. Nine glycolipids with headgroup and chain length variation were derived from renewable resources like vegetable oils, carbohydrates, and amino acids. The concentration-dependent interfacial activity, foamability, wetting power, emulsification power, and solubilization capacities of glycolipids were investigated to provide a structure-activity relationship. Later, the metal flotation and emulsification experiments were performed. In general, for metal flotation, the surfactant should contain a hydrophobic tail, hydrophilic head, and chelating function. In the present investigation, it was observed that the headgroup of a glycolipid can serve as a hydrophilic head as well as perform a chelating function. Moreover, heat energy generated from the sunlight was utilized for metal flotation. Additionally, these glycolipids are capable to form stable sunflower oil-water (W/O and O/W) emulsions. The mechanical and thermal stabilities and hydrophobic chain length dependency of the prepared emulsions at different water volume fractions are explored. Furthermore, encapsulation and release of water-soluble (riboflavin and L-ascorbic acid) and oil-soluble (curcumin and alpha-tocopherol) bioactives in glycolipid emulsions were monitored. Thus, glycolipids under investigation had shown the possibility for pretreatment of chromium-containing wastewaters and bioactive-loaded emulsions toward the controlled release.