Minerals Engineering, Vol.128, 187-194, 2018
Investigation of lab and pilot scale electric-pulse fragmentation systems for the recycling of ultra-high performance fibre-reinforced concrete
Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC) such as LafargeHolcim Ductal (R) is a new concrete product that incorporates large amounts of fine metal fibres, and is designed to have multiple advantages over traditional concrete products. These fibres, while providing additional strength, represent a new recycling challenge as they may block or increase wear of conventional mechanical apparatus, or be broken during processing rendering them unusable. High voltage electric-pulse fragmentation (EPF) systems such as those produced by SELFRAG AG use repeated electric discharges to selectively fragment composite materials along phase boundaries, overcoming compressive strength and preventing damage to metallic fibres. Initial tests in a laboratory scale system at a range of specific energy levels up to 60 kWh/t showed that Ductal (R) sample with a compressive strength of 170 MPa was amenable to EPF with good recovery rate of the steel fibres, which were fully liberated in the 0/2 mm product size fraction. Upscaled tests were performed on two Ductal (R) samples with compressive strengths of 170 and 210 MPa respectively using the 'Pre-Weakening Test Station' (PWTS), a continuous EPF system. Tests with specific energy levels up to 27 kWh/t showed similar results for both Ductal (R) samples: fibre liberation correlates with increasing specific energy input up to a plateau at about 13 kWh/t where increased energy produces little to no additional breakage. About 60% of fibres were recovered after just one treatment step performed at 13.4 kWh/t. These promising results obtained at pilot-scale indicate that this technology is suitable for UHPFRC recycling and fibre recovery, and that scaling-up the process to a commercial level is technically feasible.
Keywords:Recycling;Ultra-high performance fibre-reinforced concrete;Electric-pulse fragmentation;Selective fragmentation