화학공학소재연구정보센터
Polymer, Vol.154, 182-187, 2018
Effect of processing conditions on crystallization kinetics during materials extrusion additive manufacturing
Material extrusion additive manufacturing processes force molten polymer through a printer nozzle at high (> 100 s(-1)) wall shear rates prior to cooling and crystallization. These high shear rates can lead to flow-induced crystallization in common polymer processing techniques, but the magnitude and importance of this effect is unknown for additive manufacturing. A significant barrier to understanding this process is the lack of in situ measurement techniques to quantify crystallinity after polymer filament extrusion. To address this issue, we use a combination of infrared thermography and Raman spectroscopy to measure the temperature and percent crystallinity of extruded polycaprolactone during additive manufacturing. We quantify crystallinity as a function of time for the nozzle temperatures and filament feed rates accessible to the apparatus. Crystallization is shown to occur faster at higher shear rates and lower nozzle temperatures, which shows that processing conditions can have a dramatic effect on crystallization kinetics in additive manufacturing.