Science, Vol.361, No.6405, 904-+, 2018
High-performance perovskite/Cu(In,Ga)Se-2 monolithic tandem solar cells
The combination of hybrid perovskite and Cu(In,Ga)Se-2 (CIGS) has the potential for realizing high-efficiency thin-film tandem solar cells because of the complementary tunable bandgaps and excellent photovoltaic properties of these materials. In tandem solar device architectures, the interconnecting layer plays a critical role in determining the overall cell performance, requiring both an effective electrical connection and high optical transparency. We used nanoscale interface engineering of the CIGS surface and a heavily doped poly[bis(4-phenyl)(2,4,6-trimethylphenyl) amine] (PTAA) hole transport layer between the subcells that preserves open-circuit voltage and enhances both the fill factor and short-circuit current. A monolithic perovskite/CIGS tandem solar cell achieved a 22.43% efficiency, and unencapsulated devices under ambient conditions maintained 88% of their initial efficiency after 500 hours of aging under continuous 1-sun illumination.