화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.69, 161-170, January, 2019
Optimization of cell components and operating conditions in primary and rechargeable zinc.air battery
E-mail:,
We constructed a practical Zn.air battery based on a two-electrode system and developed efficient battery configurations to enhance the battery performance. The battery parameters, including the cell components and operating conditions, were investigated to improve the cell performance by maximizing the reactions at the Zn and air electrodes (oxygen reduction reaction and oxygen evolution reaction). The optimized primary Zn.air battery exhibits the highest power density compared to those in other studies. Furthermore, the rechargeable battery shows stable long-term cycling performance. Thus, our investigation and adjustment of the cell components and operating conditions resulted in a highperformance and durable Zn.air battery.
  1. Fu G, Cui Z, Chen Y, Li Y, Tang Y, Goodenough JB, Adv. Eng. Mater., 7, 160117 (2017)
  2. Shinde SS, Lee CH, Sami A, Kim DH, Lee SU, Lee JH, ACS Nano, 11, 347 (2017)
  3. Sapkota P, Kim H, J. Ind. Eng. Chem., 15(4), 445 (2009)
  4. Chen Z, Yu A, Higgins D, Li H, Wang H, Chen Z, Nano Lett., 12, 1946 (2012)
  5. Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H, Nat. Commun., 4, 1805 (2013)
  6. Fu J, Cano ZP, Park MG, Yu A, Fowler M, Chen Z, Adv. Mater., 29, 160468 (2017)
  7. Yang J, Hu J, Weng M, Tan R, Tian L, Yang J, Amine J, Zheng J, Chen H, Pan F, ACS Appl. Mater. Interfaces, 9, 4587 (2017)
  8. Lee JS, Park GS, Lee HI, Kim ST, Cao R, Liu M, Cho J, Nano Lett., 11, 5362 (2011)
  9. Tian LL, Yang J, Weng MY, Tan R, Zheng JX, Chen HB, Zhuang QC, Dai LM, Pan F, ACS Appl. Mater. Interfaces, 9, 7125 (2017)
  10. Prabu M, Ramakrishnan P, Nara H, Momma T, Osaka T, Shanmugam S, ACS Appl. Mater. Interfaces, 6, 16545 (2014)
  11. Wang HF, Tang C, Wang B, Li BQ, Zhang Q, Adv. Mater., 29, 170232 (2017)
  12. Wu X, Han X, Ma X, Zhang W, Deng Y, Zhong C, Hu W, ACS Appl. Mater. Interfaces, 9, 12574 (2017)
  13. Iranzo A, Munoz M, Pino FJ, Rosa F, J. Power Sources, 196(9), 4264 (2011)
  14. Lee DU, Scott J, Park HW, Abureden S, Choi JY, Chen Z, Electrochem. Commun., 43, 109 (2014)
  15. Park JE, Kim MJ, Lim MS, Kang SY, Kim JK, Oh SH, Her M, Cho YH, Sung YE, Appl. Catal. B: Environ., 237, 140 (2018)
  16. Gomadam PM, Weidner JW, Int. J. Energy Res., 29(12), 1133 (2005)
  17. Colton R, Sketchley GJ, Ritchie IM, J. Chem. Educ., 53, 130 (1976)
  18. Hong S, Hou M, Xiao Y, Shao Z, Yi B, Energy Technol., 5, 1457 (2017)
  19. Park JE, Lim J, Kim S, Choi I, Ahn CY, Hwang W, Lim MS, Cho YH, Sung YE, Electrochim. Acta, 265, 488 (2018)
  20. El-Kharouf A, Mason TJ, Brett DJL, Pollet BG, J. Power Sources, 218, 393 (2012)
  21. Nguyen TV, Ahosseini A, Wang XH, Yarlagadda V, Kwong A, Weber AZ, Deevanhxay P, Tsushima S, Hirai S, J. Electrochem. Soc., 162(14), F1451 (2015)
  22. Santoro C, Agrios A, Pasaogullari U, Li BK, Int. J. Hydrog. Energy, 36(20), 13096 (2011)
  23. Antolini E, Appl. Catal. B: Environ., 88(1-2), 1 (2009)
  24. Lee JS, Lee T, Song HK, Cho J, Kim BS, Energy Environ. Sci., 4, 4148 (2011)
  25. Zhang JT, Zhao ZH, Xia ZH, Dai LM, Nat. Nanotechnol., 10(5), 444 (2015)
  26. Zhu AL, Wilkinson DP, Zhang X, Xing Y, Rozhin AG, Kulinich SA, J. Energy Storage, 8, 35 (2016)
  27. McBreen J, J. Electrochem. Soc., 119, 1620 (1972)