화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.69, 304-314, January, 2019
Production of phenolic hydrocarbons from organosolv lignin and lignocellulose feedstocks of hardwood, softwood, grass and agricultural waste
E-mail:
Organosolv lignin extracted from the four representative lignocellulose feeds of oil palm empty fruit bunch (agricultural waste), oak (hardwood), pine (softwood) and Miscanthus giganteus (grass) is depolymerized using Ru/H-zeolite β to produce phenolic hydrocarbons. The bulky methoxy functionality, which is rich in oak and pine, sterically hindered the ether bonds, decreasing the yields of phenolic monomers and improving the β-β coupling to repolymerize lignin fragments. Both depolymerization and repolymerization are improved at a higher reaction temperature. The structures and the reaction behavior of organosolv lignin are observed using NMR, GPC, N2-physisorption, SEM and DLS analysis methods.
  1. Yang HP, Yan R, Chen HP, Lee DH, Zheng CG, Fuel, 86(12-13), 1781 (2007)
  2. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Science, 344, 124684 (2014)
  3. Isikgor FH, Becer CR, Chem. Polym., 6, 4497 (2015)
  4. Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM, Angew. Chem.-Int. Edit., 55, 8164 (2016)
  5. Limarta SO, Ha HM, Park YK, Lee HJ, Suh DJ, Jae JH, J. Ind. Eng. Chem., 57, 45 (2018)
  6. Chen J, Lu F, Si X, Nie X, Chen J, Lu R, Xu J, ChemSusChem, 9, 3353 (2016)
  7. Zhou S, Xue Y, Sharma A, Bai X, ACS Sustain. Chem. Eng., 4, 6608 (2016)
  8. Ma R, Guo M, Lin KT, Hebert VR, Zhang J, Wolcott MP, Quintero M, Ramasamy KK, Chen X, Zhang X, Chem. Eur. J., 22, 10884 (2016)
  9. Wang M, Zhang X, Li H, Lu J, Liu M, Wang F, ACS Catal., 8, 1614 (2018)
  10. Kim M, Son D, Choi JW, Jae J, Suh DJ, Ha JM, Lee KY, J. Chem. Eng., 309, 187 (2017)
  11. Shao Y, Xia Q, Dong L, Liu X, Han X, Parker SF, Cheng Y, Daemen LL, Ramirez-Cuesta AJ, Yang S, Wang Y, Nat. Commun., 8, 16104 (2017)
  12. Zhang C, Li C, Lu J, Zhang X, MacArthur KE, Heggen M, Wang F, ACS Catal., 7, 3419 (2017)
  13. Li H, Wang M, Liu H, Luo N, Lu J, Zhang C, Wang F, ACS Sustain. Chem. Eng., 6, 3748 (2018)
  14. Shuai L, Amiri MT, Questell-Santiago YM, Heroguel F, Li YD, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher JS, Science, 354(6310), 329 (2016)
  15. Alvarez-Vasco C, Ma R, Quintero M, Guo M, Geleynse S, Ramasamy KK, Wolcott M, Zhang X, Green Chem., 18, 5133 (2016)
  16. Stoklosa RJ, Velez J, Kelkar S, Saffron CM, Thies MC, Hodge DB, Green Chem., 15, 2904 (2013)
  17. Zhang XH, Zhang Q, Wang TJ, Ma LL, Yu YX, Chen LG, Bioresour. Technol., 134, 73 (2013)
  18. Yoon JS, Lee T, Choi JW, Suh DJ, Lee K, Ha JM, Choi J, Catal. Today, 293, 142 (2017)
  19. Dwiatmoko AA, Kim I, Zhou L, Choi JW, Suh DJ, Jae J, Ha JM, Appl. Catal. A: Gen., 543, 10 (2017)
  20. Dwiatmoko AA, Zhou LP, Kim I, Choi JW, Suh DJ, Ha JM, Catal. Today, 265, 192 (2016)
  21. Yoon JS, Choi JW, Suh DJ, Lee K, Lee H, Ha JM, ChemCatChem, 7, 2669 (2015)
  22. Liu Y, Chen L, Wang T, Zhang Q, Wang C, Yan J, Ma L, ACS Sustain. Chem. Eng., 3, 1745 (2015)
  23. Yati I, Dwiatmoko AA, Yoon JS, Choi JW, Suh DJ, Jae J, Ha JM, Appl. Catal. A: Gen., 524, 243 (2016)
  24. Omar R, Idris A, Yunus R, Khalid K, Isma MIA, Fuel, 90(4), 1536 (2011)
  25. Shen D, Liu G, Zhao J, Xue J, Guan S, Xiao R, J. Anal. Appl. Pyrolysis, 112, 56 (2015)
  26. Li CZ, Zhao XC, Wang AQ, Huber GW, Zhang T, Chem. Rev., 115(21), 11559 (2015)
  27. Diaz MJ, Huijgen WJJ, van der Laan RR, Reith JH, Cara C, Castro E, Holzforschung, 65, 177 (2011)
  28. Huijgen WJJ, Telysheva G, Arshanitsa A, Gosselink RJA, de Wild PJ, Ind. Crop. Prod., 59, 85 (2014)
  29. Huijgen WJJ, Reith JH, den Uil H, Ind. Eng. Chem. Res., 49(20), 10132 (2010)
  30. Baumberger S, Abaecherli A, Fasching M, Gellerstedt G, Gosselink R, Hortling B, Li J, Saake B, de Jong E, Holzforschung, 61, 459 (2007)
  31. Huang X, Koranyi TI, Boot MD, Hensen EJ, ChemSusChem, 7, 2276 (2014)
  32. Mansfield SD, Kim H, Lu F, Ralph J, Nat. Protoc., 7, 1579 (2012)
  33. Pu Y, Cao S, Ragauskas AJ, Energy Environ. Sci., 4, 3154 (2011)
  34. Templeton DW, Scarlata CJ, Sluiter JB, Wolfrum EJ, J. Agric. Food Chem., 58, 9054 (2010)
  35. Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW, J. Agric. Food Chem., 58, 9043 (2010)
  36. Guo H, Zhang B, Qi Z, Li C, Ji J, Dai T, Wang A, Zhang T, ChemSusChem, 10, 523 (2017)
  37. Tolbert A, Akinosho H, Khunsupat R, Naskar AK, Ragauskas AJ, Bioprod. Biofuels Biorefin., 8, 836 (2014)
  38. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM, Chem. Rev., 110(6), 3552 (2010)
  39. Luo Z, Zheng Z, Wang Y, Sun G, Jiang H, Zhao C, Green Chem., 18, 5845 (2016)
  40. Faix O, Argyropoulos DS, Robert D, Neirinck V, Holzforschung, 48, 387 (1994)
  41. Bunzel M, Ralph J, Lu F, Hatfield RD, Steinhart H, J. Agric. Food Chem., 52, 6496 (2004)
  42. Zhang A, Lu F, Sun R, J. Ralph, Planta, 229, 1099 (2009)
  43. Lu F, Ralph J, Morreel K, Messens E, Boerjan W, Org. Biomol. Chem., 2, 2888 (2004)
  44. Wen JL, Sun SL, Xue BL, Sun BRC, Materials, 6, 359 (2013)
  45. Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W, New Phytol., 196, 978 (2012)
  46. Gang DR, Costa MA, Fujita M, Dinkova-Kostova AT, Wang HB, Burlat V, Martin W, Sarkanen S, Davin LB, Lewis NG, Chem. Biol., 6, 143 (1999)
  47. Yoon JS, Lee Y, Ryu J, Kim YA, Park ED, Choi JW, Ha JM, Suh DJ, Lee H, Appl. Catal. B: Environ., 142-143, 668 (2013)
  48. Wang S, Wang K, Liu Q, Gu Y, Luo Z, Cen K, Fransson T, Biotechnol. Adv., 27, 562 (2009)
  49. Jiang GZ, Nowakowski DJ, Bridgwater AV, Thermochim. Acta, 498(1-2), 61 (2010)
  50. Tejado A, Pena C, Labidi J, Echeverria JM, Mondragon I, Bioresour. Technol., 98(8), 1655 (2007)