Korean Journal of Chemical Engineering, Vol.36, No.1, 71-76, January, 2019
Continuous production of bioethanol using microalgal sugars extracted from Nannochloropsis gaditana
E-mail:,
We developed a continuous production process of bioethanol from sugars extracted from Nannochloropsis gaditana. To improve algal sugar production, the reaction conditions of acid-thermal hydrolysis were investigated based on five different types of acid and their concentrations (1-4%), and the loading ratio of solid/liquid (S/L). As a result, the maximum hydrolysis efficiency (92.82%) was achieved under 2% hydrochloric acid with 100 g/L biomass loading at 121 °C for 15 min. The hydrolysates obtained from N. gaditana were applied to the main medium of Bretthanomyces custersii H1-603 for bioethanol production. The maximum bioethanol production and yield by the microalgal hydrolysate were found to be 4.84 g/L and 0.37 g/g, respectively. In addition, the cell immobilization of B. custersii was carried out using sodium alginate, and the effect of the volume ratio of cell/sodium alginate on bioethanol productivity was investigated in a batch system. The optimal ratio was determined as 2 (v/v), and the immobilized cell beads were applied in the continuous stirred tank reactor (CSTR). Continuous ethanol production was performed using both free cells and immobilized cells at 1 L CSTR. In both groups, the maximum bioethanol production and yield were achieved at dilution rate of 0.04 h-1 (3.93 g/L and 0.3 g/g by free cell, and 3.68 g/L and 0.28 g/g by immobilized cell, respectively).
- Neri E, Passarini F, Cespi D, Zoffoli F, Vassura I, J. Clean Prod., 171, 1006 (2018)
- Phusunti N, Phetwarotai W, Tekasakul S, Korean J. Chem. Eng., 35(2), 503 (2018)
- Yoo HY, Pradeep GC, Lee SK, Park DH, Cho SS, Choi YH, Kim SW, Biotechnol. J., 10, 1894 (2015)
- Yang X, Choi HS, Park C, Kim SW, Renew. Sust. Energ. Rev., 49, 335 (2015)
- Lee JH, Kim DS, Yang JH, Chun Y, Yoo HY, Han SO, Lee J, Park C, Kim SW, Bioresour. Technol., 264, 387 (2018)
- Kidanu WG, Trang PT, Yoon HH, Biotechnol. Bioprocess Eng., 22, 612 (2017)
- Singh J, Gu S, Renew. Sust. Energ. Rev., 14, 2596 (2010)
- Cheng J, Yang Z, Zhou J, Cen K, Korean J. Chem. Eng., 35(2), 498 (2018)
- Daroch M, Geng S, Wang GY, Appl. Energy, 102, 1371 (2013)
- Zhou N, Zhang YM, Gong XW, Wang QH, Ma YH, Bioresour. Technol., 118, 512 (2012)
- Scholz MJ, Weiss TL, Jinkerson RE, Jing J, Roth R, Goodenough U, Posewitz MC, Gerken HG, Eukaryot. Cell (2014),DOI:10.1128/EC.00183-14.
- Monlau F, Sambusiti C, Barakat A, Quemeneur M, Trably E, Steyer JP, Carrere H, Biotechnol. Adv., 32, 934 (2014)
- Sanchez-Machado DI, Lopez-Cervantes J, Lopez-Hernandez J, Paseiro-Losada P, Food Chem., 85, 439 (2004)
- Lim HG, Seo SW, Jung GY, Bioresour. Technol., 135, 564 (2013)
- Holden HM, Rayment I, Thoden JB, J. Biol. Chem., 278, 43885 (2003)
- Rabelo SC, Maciel R, Costa AC, Appl. Biochem. Biotechnol., 153(1-2), 139 (2009)
- Miranda JR, Passarinho PC, Gouveia L, Bioresour. Technol., 104, 342 (2012)
- Lee JH, Kim DS, Yang JH, Yoo HY, Han SO, Lee J, Park C, Kim SW, J. Clean Prod., 187, 903 (2018)
- Yoo HY, Yang X, Kim DS, Lee SK, Lotrakul P, Prasongsuk S, Punnapayak H, Kim SW, Biotechnol. Bioprocess Eng., 21, 733 (2016)
- Yoo HY, Lee JH, Kim DS, Lee JH, Lee SK, Lee SJ, Park C, Kim SW, J. Ind. Eng. Chem., 51, 303 (2017)
- Montipo S, Ballesteros I, Fontana RC, Liu S, Martins AF, Ballesteros M, Camassola M, Bioresour. Technol., 249, 1017 (2018)
- Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS, Bioresour. Technol., 135, 191 (2013)
- Wang H, Ji CL, Bi SL, Zhou P, Chen L, Liu TZ, Bioresour. Technol., 172, 169 (2014)
- Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ, Bioresour. Technol., 108, 83 (2012)
- Lee KH, Choi IS, Kim YG, Yang DJ, Bae HJ, Bioresour. Technol., 102(17), 8191 (2011)
- Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA, Food Microbiol., 21, 377 (2004)
- Ahmad ZS, Munaim MSA, Food Biosci., 21, 27 (2018)