Macromolecular Research, Vol.26, No.12, 1099-1102, December, 2018
Fabrication of Red-Light Emitting Organic Semiconductor Nanoparticles via Guidance of DNAs and Surfactants
E-mail:
Organic semiconductor materials for fabricating organic light emitting diodes (OLEDs) have attracted significant attention in the field of novel optical and optoelectronic devices. Particulation of OLEDs’ emitting materials in small-scale has been limited only to tris(8-hydroxyquinoline) aluminum (Alq3) that emits green-light. In this study, we attempted to fabricate, for the first time, red-light emitting nanoparticles of phosphorescent organic semiconductor of bis(1-phenylisoquinoline) (acetylacetonate) iridium (Ir(piq)2(acac)). Rectangular particles with length and thickness of ∼2 μm and ∼50 nm were fabricated with guidance of cetyltrimethylammonium bromide (CTAB) and micro-plates with length and thickness of ∼5 μm and ∼100 nm were fabricated by sodium dodecyl sulfate (SDS). By contrast, single-stranded DNA (ssDNA) induced nano-rods with dimension of ∼400 nm in length and 100 nm in thickness. Hence, the choice of guiding agents resulted in distinctive crystal characteristic so that the nanorods by ssDNAs showed UV absorption with a red-shift in metal-ligand charge transfer (MLCT) by 54 nm whereas the particles by surfactants did 35 nm compared to the dissolved precursor. Higher was the ssDNA-guided nanorods in relative phosphorescence of the intensity at 610 nm over that at 695 nm than the surfactant-guided particles.
Keywords:red-light emitting nanoparticles;organic semiconductors;DNAs;surfactants;bis(1-phenylisoquinoline) (acetylacetonate) iridium (Ir(piq)2(acac))
- Hide F, Diaz-Garcia MA, Schwartz BJ, Heeger AJ, Accounts Chem. Res., 30, 430 (1997)
- He Z, Zhong C, Su S, Xu M, Wu H, Cao Y, Nat. Photon., 6, 591 (2012)
- Gunes S, Neugebauer H, Sariciftci NS, Chem. Rev., 107(4), 1324 (2007)
- Kim KW, Choi H, Lee GS, Ahn DJ, Oh MK, Kim JM, Macromol. Res., 14(4), 483 (2006)
- Ji EK, Ahn DJ, Kim JM, Bull. Korean Chem. Soc., 24, 667 (2003)
- Tang CW, VanSlyke SA, Appl. Phys. Lett., 51, 913 (1987)
- Forrest SR, Nature, 428, 911 (2004)
- Lim TB, KiM KH, Song SA, Lim SN, Kim KY, Jeong YC, Macromol. Res., 25(8), 786 (2017)
- Lee J, Chen HF, Batagoda T, Coburn C, Djurovich PI, Thompson ME, Forrest SR, Nat. Mater., 15(1), 92 (2016)
- Baldo MA, Thompson ME, Forrest SR, Nature, 403, 750 (2000)
- Su SJ, Chiba T, Takeda T, Kido J, Adv. Mater., 20(11), 2125 (2008)
- Sun Y, Giebink NC, Kanno H, Ma B, Thompson ME, Forrest SR, Nature, 440, 908 (2006)
- An BK, Kwon SK, Jung SD, Park SY, J. Am. Chem. Soc., 124(48), 14410 (2002)
- Song M, Park JS, Yoon M, Yoon HW, Kim AJ, Jin SH, Gal YS, Lee JH, Lee JW, Macromol. Res., 18(11), 1088 (2010)
- Park H, Shin DC, Shin SC, Kim JH, Kwon SK, Kim YH, Macromol. Res., 19(9), 965 (2011)
- Lim SJ, An BK, Jung SD, Chung MA, Park SY, Angew. Chem.-Int. Edit., 43, 6346 (2004)
- Hu JS, Guo YG, Liang HP, Wan LJ, Jiang L, J. Am. Chem. Soc., 127(48), 17090 (2005)
- Tachikawa T, Chung HR, Masuhara A, Kasai H, Oikawa H, Nakanishi H, Fujitsuka M, Majima T, J. Am. Chem. Soc., 128(50), 15944 (2006)
- Jang J, Oh JH, Adv. Mater., 15(12), 977 (2003)
- Balakrishnan K, Datar A, Naddo T, Huang JL, Oitker R, Yen M, Zhao JC, Zang L, J. Am. Chem. Soc., 128(22), 7390 (2006)
- Fu H, Xiao D, Yao J, Yang G, Angew. Chem.-Int. Edit., 42, 2883 (2003)
- Chen W, Peng Q, Li Y, Adv. Mater., 20(14), 2747 (2008)
- Collins AM, Olof SN, Mitchels JM, Mann S, J. Mater. Chem., 19, 3950 (2009)
- Wang H, Liao Q, Fu H, Zeng Y, Jiang Z, Ma J, Yao J, J. Mater. Chem., 19, 89 (2009)
- Cui C, Park DH, Kim J, Joo J, Ahn DJ, Chem. Commun., 49, 5360 (2013)
- Back SH, Park JH, Cui C, Ahn DJ, Nat. Commun., 7, 10234 (2016)
- Kwak J, Lyu YY, Lee H, Choi B, Char K, Lee C, J. Mater. Chem., 22, 6351 (2012)
- Su YJ, Huang HL, Li CL, Chien CH, Tao YT, Chou PT, Datta S, Liu RS, Adv. Mater., 15(11), 884 (2003)
- Li CL, Su YJ, Tao YT, Chou PT, Chien CH, Cheng CC, Liu RS, Adv. Funct. Mater., 15(3), 387 (2005)
- Fu HB, Yao JN, J. Am. Chem. Soc., 123(7), 1434 (2001)