Korean Journal of Materials Research, Vol.28, No.12, 738-747, December, 2018
항공용 고강도 2xxx계 알루미늄 합금의 3.5 % 염수 환경에서의 응력부식균열 민감도
Stress Corrosion Cracking Sensitivity of High-Strength 2xxx Series Aluminum Alloys in 3.5 % NaCl Solution
E-mail:
For the aerospace structural application of high-strength 2xxx series aluminum alloys, stress corrosion cracking(SCC) behavior in aggressive environments needs to be well understood. In this study, the SCC sensitivities of 2024- T62, 2124-T851 and 2050-T84 alloys in a 3.5% NaCl solution are measured using a constant load testing method without polarization and a slow strain rate test(SSRT) method at a strain rate of 10-6 /sec under a cathodic applied potential. When the specimens are exposed to a 3.5% NaCl solution under a constant load for 10 days, the decrease in tensile ductility is negligible for 2124-T851 and 2050-T84 specimens, proving that T8 heat treatment is beneficial in improving the SCC resistance of 2xxx series aluminum alloys. The specimens are also susceptible to SCC in a hydrogen-generating environment at a slow strain rate of 10.6/sec in a 3.5% NaCl solution under a cathodic applied potential. Regardless of the test method, low impurity 2124-T851 and high Cu/Mg ratio 2050-T84 alloys are found to have relatively lower SCC sensitivity than 2024-T62. The SCC behavior of 2xxx series aluminum alloys in the 3.5% NaCl solution is discussed based on fractographic and micrographic observations.
- Dursun T, Soutis C, Mater. Des., 56, 862 (2014)
- Liu HJ, Fujii H, Maeda M, Nogi K, J. Mater. Process. Technol., 142, 692 (2003)
- Tiamuyu AA, Basu R, Odeshi AG, Szpunar JA, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 636, 379 (2015)
- Lee CJ, Park SS, Sin SJ, Jung YI, Aircraft Structure Design In Practice, p.47, G-WORLD, Korea (2017).
- Guillaumin V, Mankowski G, Corrosion Sci., 41, 421 (1999)
- Mahmoud S, Lease K, Eng. Fract. Mech., 70, 443 (2003)
- Kim YJ, Kwon JK, Jeong YI, Woo NS, Kim SS, Met. Mater. Int., 19, 19 (2013)
- Lin YC, Xia YC, Chen XM, Chen MS, Comput. Mater. Sci., 50, 227 (2010)
- Lequeu P, Smith KP, Danie'lou A, J. Mater. Eng. Perform., 19, 841 (2010)
- Starke EA, Staley JT, Progr. Aero. Sci., 32, 131 (1996)
- Li HY, Tang Y, Zeng ZD, Zheng F, Trans. Nonferrous Met. Soc. China, 18, 778 (2008)
- Buchheit RG, Grant RP, Hlava PF, Mckenzie B, Zender GL, J. Electrochem. Soc., 144(8), 2621 (1997)
- Kumai C, Kusinski J, Thomas G, Devine TM, Corrosion, 45, 294 (1969)
- McNaughtan D, Worsfold M, Robinson MJ, Corrosion Sci., 45, 2377 (2003)
- Urushino K, Sugimoto K, Corrosion Sci., 19, 225 (1979)
- Maitra S, Corrosion, 37, 98 (1981)
- Najjar D, Magnin T, Warner TJ, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 238, 293 (1997)
- Woodtli J, Kieselbach R, Eng. Fail. Anal., 7, 427 (2000)
- Speidel MO, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 6, 631 (1975)
- Tao J, Pierre et Marie Curie University, p. 9, Paris (2016).
- Burleigh TD, Corrosion, 47, 89 (1991)
- Lee HJ, Kim YJ, Jeong YI, Kim SS, Corrosion Sci., 55, 10 (2012)
- Tsai TC, Chuang TH, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 225, 135 (1997)
- Rana RS, Purohit R, Das S, Int. J. Sci. Res. Publ., 2, 1 (2012)
- Holroyd NJH, Scamans GM, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 44, 1230 (2013)
- Chen GS, Gao M, Wei RP, Corrosion, 52, 8 (1996)
- Rajan K, Wallace W, Beddoes JC, J. Mater. Sci., 17, 2817 (1982)
- Chen GS, Gao M, Wei RP, Corrosion Sci., 52, 8 (1996)
- Taylor JA, Queensland University, p. 4, Brisbane (2004).
- Zeren M, J. Mater. Process. Technol., 169, 292 (2005)
- Warner T, Mater. Sci. Forum, 519-521, 1271 (2006)
- El-Aty AA, Xu Y, Guo XZ, Zhang SH, Ma Y, Chen DY, J. Adv. Res., 10, 49 (2018)
- Ketcham SJ, Corrosion Sci., 7, 305 (1967)
- Zhang XX, Zhou XR, Hashimoto T, Liu B, Luo C, Sun ZH, Tang ZH, Lu F, Ma YL, Corrosion Sci., 132, 1 (2018)