화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.28, No.12, 738-747, December, 2018
항공용 고강도 2xxx계 알루미늄 합금의 3.5 % 염수 환경에서의 응력부식균열 민감도
Stress Corrosion Cracking Sensitivity of High-Strength 2xxx Series Aluminum Alloys in 3.5 % NaCl Solution
E-mail:
For the aerospace structural application of high-strength 2xxx series aluminum alloys, stress corrosion cracking(SCC) behavior in aggressive environments needs to be well understood. In this study, the SCC sensitivities of 2024- T62, 2124-T851 and 2050-T84 alloys in a 3.5% NaCl solution are measured using a constant load testing method without polarization and a slow strain rate test(SSRT) method at a strain rate of 10-6 /sec under a cathodic applied potential. When the specimens are exposed to a 3.5% NaCl solution under a constant load for 10 days, the decrease in tensile ductility is negligible for 2124-T851 and 2050-T84 specimens, proving that T8 heat treatment is beneficial in improving the SCC resistance of 2xxx series aluminum alloys. The specimens are also susceptible to SCC in a hydrogen-generating environment at a slow strain rate of 10.6/sec in a 3.5% NaCl solution under a cathodic applied potential. Regardless of the test method, low impurity 2124-T851 and high Cu/Mg ratio 2050-T84 alloys are found to have relatively lower SCC sensitivity than 2024-T62. The SCC behavior of 2xxx series aluminum alloys in the 3.5% NaCl solution is discussed based on fractographic and micrographic observations.
  1. Dursun T, Soutis C, Mater. Des., 56, 862 (2014)
  2. Liu HJ, Fujii H, Maeda M, Nogi K, J. Mater. Process. Technol., 142, 692 (2003)
  3. Tiamuyu AA, Basu R, Odeshi AG, Szpunar JA, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 636, 379 (2015)
  4. Lee CJ, Park SS, Sin SJ, Jung YI, Aircraft Structure Design In Practice, p.47, G-WORLD, Korea (2017).
  5. Guillaumin V, Mankowski G, Corrosion Sci., 41, 421 (1999)
  6. Mahmoud S, Lease K, Eng. Fract. Mech., 70, 443 (2003)
  7. Kim YJ, Kwon JK, Jeong YI, Woo NS, Kim SS, Met. Mater. Int., 19, 19 (2013)
  8. Lin YC, Xia YC, Chen XM, Chen MS, Comput. Mater. Sci., 50, 227 (2010)
  9. Lequeu P, Smith KP, Danie'lou A, J. Mater. Eng. Perform., 19, 841 (2010)
  10. Starke EA, Staley JT, Progr. Aero. Sci., 32, 131 (1996)
  11. Li HY, Tang Y, Zeng ZD, Zheng F, Trans. Nonferrous Met. Soc. China, 18, 778 (2008)
  12. Buchheit RG, Grant RP, Hlava PF, Mckenzie B, Zender GL, J. Electrochem. Soc., 144(8), 2621 (1997)
  13. Kumai C, Kusinski J, Thomas G, Devine TM, Corrosion, 45, 294 (1969)
  14. McNaughtan D, Worsfold M, Robinson MJ, Corrosion Sci., 45, 2377 (2003)
  15. Urushino K, Sugimoto K, Corrosion Sci., 19, 225 (1979)
  16. Maitra S, Corrosion, 37, 98 (1981)
  17. Najjar D, Magnin T, Warner TJ, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 238, 293 (1997)
  18. Woodtli J, Kieselbach R, Eng. Fail. Anal., 7, 427 (2000)
  19. Speidel MO, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 6, 631 (1975)
  20. Tao J, Pierre et Marie Curie University, p. 9, Paris (2016).
  21. Burleigh TD, Corrosion, 47, 89 (1991)
  22. Lee HJ, Kim YJ, Jeong YI, Kim SS, Corrosion Sci., 55, 10 (2012)
  23. Tsai TC, Chuang TH, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 225, 135 (1997)
  24. Rana RS, Purohit R, Das S, Int. J. Sci. Res. Publ., 2, 1 (2012)
  25. Holroyd NJH, Scamans GM, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 44, 1230 (2013)
  26. Chen GS, Gao M, Wei RP, Corrosion, 52, 8 (1996)
  27. Rajan K, Wallace W, Beddoes JC, J. Mater. Sci., 17, 2817 (1982)
  28. Chen GS, Gao M, Wei RP, Corrosion Sci., 52, 8 (1996)
  29. Taylor JA, Queensland University, p. 4, Brisbane (2004).
  30. Zeren M, J. Mater. Process. Technol., 169, 292 (2005)
  31. Warner T, Mater. Sci. Forum, 519-521, 1271 (2006)
  32. El-Aty AA, Xu Y, Guo XZ, Zhang SH, Ma Y, Chen DY, J. Adv. Res., 10, 49 (2018)
  33. Ketcham SJ, Corrosion Sci., 7, 305 (1967)
  34. Zhang XX, Zhou XR, Hashimoto T, Liu B, Luo C, Sun ZH, Tang ZH, Lu F, Ma YL, Corrosion Sci., 132, 1 (2018)