화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.6, 657-662, December, 2018
Pt/TiO2 촉매의 물리화학적 특성이 CO 상온산화 반응에 미치는 영향 연구
Effect of Physico-chemical Properties of Pt/TiO2 Catalyst on CO Oxidation at Room Temperature
E-mail:
초록
본 연구에서는, Pt/TiO2 촉매의 물리화학적 특성이 CO 상온산화 반응에 미치는 영향을 조사하기 위하여 각기 다른 물리적 특성을 가지는 다양한 TiO2 지지체를 이용하여 Pt/TiO2 촉매를 제조한 후 평가하였다. 촉매의 물리화학적 특성을 조사하기 위하여 XPS, CO-chemisorption, BET, CO-TPD 분석을 수행하였다. 그 결과, active particle diameter가 작을 수록, metal dispersion, surface area가 클수록 우수한 CO 상온산화 반응을 나타내었다. 이러한 물리적 특성은 active site 의 수를 증진시켜 대상물질은 CO의 흡착량의 증가를 야기시켰다. 또한, O2-consumption이 클수록 우수한 산소 전달 능력을 통해 보다 높은 CO 상온산화 반응활성을 나타내었다.
In this study, the effect of Pt/TiO2 catalysts on the CO oxidation reaction at room temperature was investigated using various TiO2 supports with different physical properties to compare and evaluate Pt/TiO2 catalysts. Physicochemical properties of the catalyst were alanyzed using XPS, CO-chemisorption, BET, and CO-TPD. As a result, when the active particle diameter was smaller, while the metal dispersion and surface area were larger, the CO room temperature oxidation reaction was better. These physical properties increased the number of active sites, causing the target material to increase the adsorption amount of CO. In addition, when the O2-consumption increased, the CO-room temperature oxidation reaction activity increased due to the excellent oxygen-transferring ability.
  1. Haruta M, Yamada N, Kobayashi T, lijima S, J. Catal., 115, 301 (1989)
  2. Costello CK, Kung MC, Oh HS, Wang Y, Kung HH, Appl. Catal. A: Gen., 232(1-2), 159 (2002)
  3. Costello CK, Yang JH, Law HY, Wang Y, Lin JN, Marks LD, Kung MC, Kung HH, Appl. Catal. A: Gen., 243(1), 15 (2003)
  4. Oh HS, Yang JH, Costello CK, Wang YM, Bare SR, Kung HH, Kung MC, J. Catal., 210(2), 375 (2002)
  5. Costello CK, Guzman J, Yang JH, Wang YM, Kung MC, Gates BC, Kung HH, J. Phys. Chem. B, 108(33), 12529 (2004)
  6. Yang JH, Henao JD, Raphulu MC, Wang YM, Caputo T, Groszek AJ, Kung MC, Scurrell MS, Miller JT, Kung HH, J. Phys. Chem. B, 109(20), 10319 (2005)
  7. Henao JD, Caputo T, Yang JH, Kung MC, Kung HH, J. Phys. Chem. B, 110(17), 8689 (2006)
  8. Oxford SM, Henao JD, Yang JH, Kung MC, Kung HH, Appl. Catal. A: Gen., 339(2), 180 (2008)
  9. Shen YX, Lu GZ, Guo Y, Wang YQ, Guo YL, Gong XQ, Catal. Today, 175(1), 558 (2011)
  10. Li S, Liu G, Lian H, Jia M, Zhao G, Jiang D, Zhang W, Catal. Commun., 9, 1045 (2008)
  11. Kim GJ, Kwon DW, Hong SC, J. Phys. Chem. C, 120, 17996 (2016)
  12. Cho SP, A study on the SCR reaction at low temperature and the characteristics of V/titania NOx removal catalyst, Korea (2010).
  13. Kim SS, Park KH, Hong SC, Appl. Catal. A: Gen., 398(1-2), 96 (2011)
  14. De Angelis BA, J. Mol. Catal., 19, 289 (1983)
  15. Kamiuchi N, Haneda M, Ozawa M, Catal. Today, 201, 79 (2013)
  16. Boubnov A, Dahl S, Johnson E, Molina AP, Simonsen SB, Cano FM, Helveg S, Lemus-Yegres LJ, Grunwaldt JD, Appl. Catal. B: Environ., 126, 315 (2012)
  17. Yamaguchi N, Kamiuchi N, Muroyama H, Matsui T, Eguchi K, Catal. Today, 164(1), 169 (2011)
  18. Seo PW, The Mechanism and characteristics of formaldehyde oxidation reaction over Pt/TiO2 catalysts at room temperature, Korea (2010).