화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.6, 677-681, December, 2018
고밀도 탄소블럭 제조를 위한 코크스와 바인더피치의 젖음성에 미치는 불소화의 영향
The Effect of Fluorination on Wettability between Cokes and Binder Pitch for Carbon Block with High Density
E-mail:
초록
본 연구에서는 탄소블럭의 고밀도화를 위하여 불소화 표면처리된 코크스와 바인더피치를 압축성형으로 탄소블럭을 제조하였다. 불소화 표면처리 후 코크스 표면에 불소원소는 XPS 분석을 통하여 최대 24.14 at%가 도입된 것을 확인하였다. 불소화된 코크스와 바인더피치의 젖음성을 반응온도에 따라 평가하였다. 접촉각 측정 결과로부터 불소원소가 코크스 표면에 도입될수록 바인더피치와의 젖음성이 약 64.7% 향상됨을 알 수 있었다. 또한, 불소가 가장 많이 도입된 탄소블럭의 밀도는 미처리된 코크스로부터 제조된 탄소블럭의 밀도 대비 최대 6.8% 증가하였다.
In this study, the carbon block was prepared using the fluorinated coke and binder pitch by molding compression to increase its density. After fluorination, it is confirmed that the fluorine element on the coke surface was introduced up to 24.14 at% using XPS analysis. The wettability between the fluorinated coke and binder pitch was evaluated according to the reaction temperature. From the result of contact-angle tests, it can be found that the wettability was improved up to 64.7% as more fluorine atoms were introduced on the surface of cokes. Also, the density of the carbon block with the highest amount of fluorine increased with 6.8% compared to that of using the carbon block prepared by the untreated cokes.
  1. Park MS, Cho S, Jeong E, Lee YS, J. Ind. Eng. Chem., 23, 27 (2015)
  2. Lee SM, Kang DS, Roh JS, Carbon Lett., 16, 135 (2015)
  3. Wang YG, Korai Y, Mochida I, Carbon, 37, 1049 (1999)
  4. Mochida I, Fujiura R, Kojima T, Sakamoto H, Yoshimura T, Carbon, 33, 265 (1995)
  5. Zhao Y, Shi J, Wang H, Tao Z, Liu Z, Guo Q, Liu L, Carbon, 51, 427 (2013)
  6. Savage E, Carbon-Carbon Composites, 323-354, Springer, Netherlands (1993).
  7. Kim JG, Kim JH, Im JS, Lee YS, Bae TS, J. Ind. Eng. Chem., 62, 176 (2018)
  8. Bai BC, Kim JG, Kim JH, Lee CW, Lee YS, Im JS, Carbon Lett., 25, 78 (2018)
  9. Lee SM, Kang DS, Kim HS, Roh JS, Carbon Lett., 16, 132 (2015)
  10. Kim JH, Lee YS, J. Ind. Eng. Chem., 30, 127 (2015)
  11. Hussain SN, Trzcinski AP, Asghar HMA, Sattar H, Brown NW, Roberts EPL, J. Ind. Eng. Chem., 44, 216 (2016)
  12. Yingquan L, Zhengde Z, Chaoquan D, Yusheng S, Mater. Charact., 44, 425 (2000)
  13. Ko S, Lee CW, Im JS, J. Ind. Eng. Chem., 36, 125 (2016)
  14. Chevarin F., Azari K., Ziegler D., Gauvin R., Fafard M., Alamdari H., Fuel, 183, 123 (2016)
  15. Sarkar A, Kocaefe D, Kocaefe Y, Sarkar D, Bhattacharyay D, Morais B, Chabot J, Fuel, 117, 598 (2014)
  16. Rocha VG, Blanco C, Santamaria R, Diestre EI, Menendez R, Granda M, Fuel Process. Technol., 91(11), 1373 (2010)
  17. Rocha VG, Blanco C, Santamaria R, Diestre EI, Menendez R, Granda M, Fuel, 86(7-8), 1046 (2007)
  18. Rocha VG, Blanco C, Santamaria R, Diestre EI, Menendez R, Granda M, Fuel, 84(12-13), 1550 (2005)
  19. Petrova B, Budinova T, Ekinci E, Petrov N, Yardim F, Carbon, 45, 704 (2007)
  20. Li K, Shen K, Huang ZH, Shen WC, Yang GZ, Yang JH, Kang FY, Fuel, 180, 743 (2016)
  21. Kim KH, Lee S, Kim MI, Lee YS, Fuel, 206, 58 (2017)
  22. Park MS, Kim KH, Lee YS, J. Ind. Eng. Chem., 37, 22 (2016)
  23. Jung MJ, Yu HR, Lee YS, Carbon Lett., 26, 112 (2018)
  24. Jeong E, Lee BH, Doh SJ, Park IJ, Lee YS, J. Fluor. Chem., 141, 69 (2012)
  25. Almasian A, Fard GC, Mirjalili M, Gashti MP, Carbon, 62, 146 (2018)
  26. Jeong E, Bae TS, Yun SM, Woo SW, Lee YS, Colloids Surf. A: Physicochem. Eng. Asp., 373, 36 (2011)
  27. Kim JH, Kim JG, Lee CW, Lee KB, Im JS, Carbon Lett., 23, 48 (2017)
  28. Kim JH, Kim KH, Park MS, Bae TS, Lee YS, Carbon Lett., 17, 65 (2016)
  29. Kim JH, Lee YS, Carbon Lett., 21, 111 (2017)