화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.1, 10-16, January, 2019
Bis(dimethyl hydroxyethyl) Tetraspiro Undecane을 함유하는 PET 공중합체의 열적 기계적 성질
Thermal and Mechanical Properties of PET Copolymer Containing Bis(dimethyl hydroxyethyl) Tetraspiro Undecane
E-mail:
초록
Bis(dimethyl hydroxyethyl) tetraspiro undecane(BDHTU)의 함량에 따라 PET-BDHTU 공중합체를 제조하였다. 공중합체의 유리전이온도는 BDHTU의 함량에 따라 증가하였고, BDHTU의 함량이 20 mol%일 때 93 °C로 PET에 비해 23 °C 증가하였다. 열변형온도는 PET 값인 60 °C에서 BDHTU의 함량이 20 mol%인 공중합체에서 69 °C로 9 °C 증가하였다. 충격강도는 BDHTU 함량에 따라 증가하였고, PET 값인 8.4 J/m에서 BDHTU의 함량 5 mol%인 공중합체에서 13.2 J/m로 최고값을 보였다. BDHTU 첨가가 탄성률에는 영향을 보이지 않았지만 항복응력의 경우는 BDHTU 함량에 따라 PET의 66.3에서 21.9 MPa까지 감소하였다. 이는 BDHTU의 tetraoxaspiro undecane의 bulky하면서도 강직한 구조에 의해 공중합체의 주사슬의 분절운동이 힘들어지면서 나타난 결과로 보인다. BDHTU 함량에 따른 공중합체의 광투과율은 차이가 없었다.
PET-BDHTU copolymers containing bis(dimethyl hydroxyethyl) tetraspiro undecane (BDHTU) were prepared with various BDHTU concentrations. The glass transition temperature of copolymer was increased from 70 °C for PET to 93 °C for PET-BDHTU copolymer containing 20 mol% of BDHTU. The heat deflection temperature was increased from 60 oC to 69 °C with the same BDHTU concentration. The impact strength was also increased from 8.4 J/m for PET to 13.2 J/m for PET-BDHTU copolymer containing 5 mol% of BDHTU. The effect of BDHTU on the Young's modulus was not observed, but the yield stress decreased from 66.3 MPa for PET to 21.9 MPa at 20 mol% loading of BDHTU. These resulted from the difficulty of the segmental motion of the main chain of the copolymer due to the bulky and rigid structure of tetraoxaspiro undecane of BDHTU. The optical transparency of copolymer was not changed with BDHTU concentration.
  1. Paszun D, Spychaj T, Ind. Eng. Chem. Res., 36(4), 1373 (1997)
  2. Po' R, Occhiello E, Giannotta G, Pelosini L, Abis L, Polym. Adv. Technol., 7, 365 (1996)
  3. Karayannidis GP, Sideridou ID, Zamboulis DN, Bikiaris DN, Sakalis AJ, J. Appl. Polym. Sci., 78(1), 200 (2000)
  4. Kint DPR, de Ilarduya AM, Munoz-Guerra S, J. Polym. Sci. A: Polym. Chem., 38(20), 3761 (2000)
  5. Kint DPR, Rude E, Llorens J, Munoz-Guerra S, Polymer, 43(26), 7529 (2002)
  6. Kint DPR, Alla A, Deloret E, Campos JL, Munoz-Guerra S, Polymer, 44(5), 1321 (2003)
  7. Kint DPR, Murioz-Guerra S, Polym. Int., 52, 321 (2003)
  8. Sanchez-Arrieta N, Ilarduya AM, Alla A, Murioz-Guerra S, Eur. Polym. J., 41, 1493 (2005)
  9. Hu YS, Prattipati V, Hiltner A, Baer E, Mehta S, Polymer, 46(14), 5202 (2005)
  10. Tsai Y, Fan CH, Hung CY, Tsai FJ, J. Appl. Polym. Sci., 104(1), 279 (2007)
  11. Tsai Y, Fan CH, Hung CY, Tsai FJ, Eur. Polym. J., 45, 115 (2009)
  12. Lotti N, Colonna M, Fiorini M, Finelli L, Berti C, J. Appl. Polym. Sci., 128(1), 416 (2013)
  13. Ke YC, Long CF, Qi ZN, J. Appl. Polym. Sci., 71(7), 1139 (1999)
  14. Wang Y, Gao J, Ma Y, Agarwal US, Compos. Part B, 37, 399 (2006)
  15. Chen Z, Luo P, Fu Q, Polym. Adv. Technol., 20, 916 (2009)
  16. Ghanbari A, Heuzey MC, Carreau PJ, Ton-That MT, Polymer, 54(4), 1361 (2013)
  17. Papageorgiou GZ, Karandrea E, Giliopoulos D, Papageorgiou DG, Ladavos A, Katerinopoulou A, Achilias DS, Triantafyllidis KS, Bikiaris DN, Thermochim. Acta, 576, 84 (2014)
  18. Luecha W, Magaraphan R, Surf. Sci. Nanotech., 13, 107 (2015)
  19. Cruz-Delgado VJ, Avila-Orta CA, Espinoza-Martinez AB, Mata-Padilla JM, Solis-Rosales SG, Jalbout AF, Medellin-Rodriguez FJ, Hsiao BS, Polymer, 55(2), 642 (2014)
  20. Paszkiewiez S, Nachman M, Szymezyk A, Spitalsky Z, Mosnacek J, Roslanjee Z, Polym. J. Chem. Technol., 16, 45 (2014)
  21. Pilawka R, Paszkiewiez S, Roslaniec Z, J. Therm. Anal. Calorim., 115, 451 (2014)
  22. Gorrasi G, Milone C, Piperopoulos E, Pantani R, Compos. Part B, 81, 44 (2015)
  23. Ding CK, Liu KY, Guo CY, Jia D, Cheng BW, Polym. Eng. Sci., 56(4), 408 (2016)
  24. Zanjani JSM, Okan BS, Menceloglu Y, Mater. Chem. Phys., 176, 58 (2016)
  25. Jeong SH, Yoon KH, Min BG, Lee YS, Lee SP, Park SB, Fiber Polym., 18, 1638 (2017)
  26. Kong LS, Lee YS, Yoon KH, Polym. Korea, 41(5), 844 (2017)