화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.70, 178-185, February, 2019
Performance enhancement of Li-ion battery by laser structuring of thick electrode with low porosity
E-mail:
Increasing energy and power densities is one of the important required improvements in lithium ion batteries. However, there exist limitations in increasing both energy and power densities simultaneously because of the increase in internal resistance. In this work, we report the simultaneous improvement of these properties of lithium ion battery by adopting a laser structured LiNi0.5Mn0.3- Co0.2O2 cathode. The electrode was processed to make uniformly spaced micro-grooves by using a femtosecond laser. The performance of laser structured electrodes with varying thickness (100 ~ 210 mm) and porosity (26% and 50%) were compared with that of unstructured conventional electrodes used in industry. It is demonstrated that the specific energy of thick and dense laser structured electrode (thickness = 175 μm, porosity = 26%) at 0.5C is about twice higher than that of thin and sparse unstructured electrode (thickness = 100 mm, porosity = 50%) while rate capability is almost the same. Also, although laser-structured electrodes are much thicker than unstructured electrodes, the rate performance (discharge capacity = 93%) of the laser-structured electrode is better than that of unstructured electrode at 1C. The simultaneous enhancement of the power and energy densities of the laser-structured electrodes results from the improvement of lithium ion diffusivity and cell polarization.
  1. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D, Energy Environ. Sci., 4, 3243 (2011)
  2. Ding Y, Mu DB, Wu BR, Wang R, Zhao ZK, Wu F, Appl. Energy, 195, 586 (2017)
  3. Kang K, Meng YS, Breger J, Grey CP, Ceder G, Science, 311, 977 (2006)
  4. Vetter J, Novak P, Wagner MR, Veit C, Moller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A, J. Power Sources, 147(1-2), 269 (2005)
  5. Landi BJ, Ganter MJ, Cress CD, Dileo RA, Raffaelle RP, Energy Environ. Sci., 2, 638 (2009)
  6. Wu Z, Han X, Zheng J, Wei Y, Qiao R, Shen F, Dai J, Hu L, Xu K, Yang W, Pan F, Nano Lett., 14, 4700 (2014)
  7. Gomez-Camer JL, Thuv H, Novak P, J. Power Sources, 294, 128 (2015)
  8. Chen Y, Xiang K, Zhou W, Zhu Y, Bai N, Chen H, J. Alloy. Compd., 749, 1063 (2018)
  9. Liu W, Li X, Xiong D, Hao Y, Li J, Kou H, Yan B, Li D, Lu S, Koo A, Adair K, Sun X, Nano Energy, 44, 111 (2018)
  10. Chen C, Tao T, Qi W, Zeng H, Wu Y, Liang B, Yao Y, Lu S, Chen Y, J. Alloy. Compd., 709, 708 (2017)
  11. Schipper F, Bouzaglo H, Dixit M, Erickson EM, Weigel T, Talianker M, et al., Adv. Energy Mater., 8, 170168 (2018)
  12. Lu J, Oyama G, Nishimura S, Yamada A, Chem. Mater., 28, 1101 (2016)
  13. Erickson EM, Sclar H, Schipper F, Liu J, Tian R, Ghanty C, Burstein L, Leifer N, et al., Adv. Energy Mater., 7, 170070 (2017)
  14. Schipper F, Erickson EM, Erk C, Shin JY, Chesneau FF, Aurbach D, J. Electrochem. Soc., 164(1), A6220 (2017)
  15. Kim MH, Shin HS, Shin D, Sun YK, J. Power Sources, 159(2), 1328 (2006)
  16. Patry G, Romagny A, Martinet S, Froelich D, Energy Sci. Eng., 3, 71 (2015)
  17. Lai W, Erdonmez CK, Marinis TF, Bjune CK, Dudney NJ, Xu F, Wartena R, Chiang YM, Avd. Energy Mater., 22, E139 (2010)
  18. Lu WQ, Jansen A, Dees D, Nelson P, Veselka NR, Henriksen G, J. Power Sources, 196(3), 1537 (2011)
  19. Zheng HH, Li J, Song XY, Liu G, Battaglia VS, Electrochim. Acta, 71, 258 (2012)
  20. Lu WQ, Jansen A, Dees D, Nelson P, Veselka NR, Henriksen G, J. Power Sources, 196(3), 1537 (2011)
  21. Kitada K, Murayama H, Fukuda K, Arai H, Uchimoto Y, Ogumi Z, Matsubara E, J. Power Sources, 301, 11 (2016)
  22. Fongy C, Gaillot AC, Jouanneau S, Guyomard D, Lestriez B, J. Electrochem. Soc., 157(7), A885 (2010)
  23. Pfleging W, Proll J, J. Mater. Chem. A, 2, 14918 (2014)
  24. Proll J, Kim H, Pique A, Seifert HJ, Pfleging W, J. Power Sources, 255, 116 (2014)
  25. Mangang M, Seifert HJ, Pfleging W, J. Power Sources, 304, 24 (2016)
  26. Orikasa Y, Gogyo Y, Yamashige H, Katayama M, Chen K, Mori T, et al., Sci. Rep., 6, 26382 (2016)
  27. Smyrek P, Proll J, Seifert HJ, Pfleging W, J. Electrochem. Soc., 163(2), A19 (2016)
  28. Wu MS, Liao TL, Wang YY, Wan CC, J. Appl. Electrochem., 34(8), 797 (2004)
  29. Lee SG, Jeon DH, J. Power Sources, 265, 363 (2014)
  30. Bae CJ, Erdonmez CK, Halloran JW, Chiang YM, Adv. Mater., 25(9), 1254 (2013)
  31. Oldham KB, Myland JC, Bond AM, Electrochemical Science and Technology Fundamentals and Applications, First ed., John Wiley & Son Inc., Hoboken, 2012 p. 346. ISBN: 978-0-470-71085-2.