화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.70, 311-321, February, 2019
Facile synthesis of Bi2S3 nanosheet/Zr:Fe2O3 nanorod heterojunction: Effect of Ag interlayer on the change transport and photoelectrochemical stability
E-mail:,
In this work, the hydrothermal approach has been used to prepare and control the morphology of Bi2S3 nanosheet (NS)/Zr doped Fe2O3 nanorod (NR) heterojunction grown on fluorine doped tin oxide (FTO) phoptoelectrodes. The effect of morphology of Bi2S3 NS was examined by comparing the photocatalytic activity of Zr:Fe2O3 nanorod with synthesized heterojunctions. This novel heterojunction photoanode exhibits the light harvesting, the photoinduced electron.hole separation and yielding a maximum photocurrent density of -1.27 mA cm-2 at -0.4 V vs. Ag/AgCl under one sun illumination. Bi2S3 NS on surface of the Zr:Fe2O3 NR will act as the active material which shows the dramatic improvement in photocurrent generation. Further, effect of silver interlayer on the interface properties of Bi2S3 NS/Zr: Fe2O3 NR heterojunction was also studied. The results indicated that the silver interlayer reduces charge recombination at interface of Bi2S3 and Zr:Fe2O3. Also, the surface plasmon resonance of Ag and controlled morphology enhances the performance (1.5 mA cm -2 at -0.4 V) as well as improves the stability of Bi2S3/Zr:Fe2O3 heterojunction photoelectrode. This unique design of the nanoarchitecture provides an attractive pathway for the photogenerated electrons and the silver interlayers has great impact on enhancing charge separation and improving stability of photoanode.
  1. Kondofersky I, Dunn HK, Muller A, Mandlmeier B, Feckl JM, Rohlfing DF, Scheu C, Peter LM, Bein T, ACS Appl. Mater. Interfaces, 7, 4623 (2015)
  2. Li X, Yu J, Low J, Fang Y, Xiao J, Chen X, J. Mater. Chem. A, 3, 2485 (2015)
  3. Abbas N, Shao GN, Haider MS, Imran SM, Park SS, Kim HT, J. Ind. Eng. Chem., 39, 112 (2016)
  4. Almeida TP, Fay MW, Zhu Y, Brown PD, Nanoscale, 2, 2390 (2010)
  5. Warwick MEA, Kaunisto K, Barreca D, Carraro G, Gasparotto A, Maccato C, Bontempi E, Sada C, Ruoko T, Turner S, Tendeloo GV, ACS Appl. Mater. Interfaces, 7, 8667 (2015)
  6. Choi HY, Ryu HH, Lee WJ, J. Ind. Eng. Chem., 63, 41 (2018)
  7. Dotan H, Sivula K, Gratzel M, Rothschild A, Warren SC, Energy Environ. Sci., 4, 958 (2011)
  8. Kment S, Riboni F, Pausova S, Wang L, Wang L, Han H, Hubicka Z, Krysa J, Schmuki P, Zboril R, Chem. Soc. Rev., 46, 3716 (2017)
  9. Gurudayal D, Sabba MH, Kumar LH, Wong J, Barber M, Gratzel N, Mathews N, Nano Lett., 15, 3833 (2015)
  10. Mansour H, LetifiH, Bargougui R, Almeida-Didry SD, Negulescu B, Autret-Lambert C, Gadri A, Ammar S, Appl. Phys. A-Mater. Sci. Process., 123, 787 (2017)
  11. Zhang Y, Ji H, Ma W, Chen C, Song W, Zhao J, Molecules, 21, 86801 (2016)
  12. Mahadik MA, Subramanian A, Chung HS, Cho M, Jang JS, ChemSusChem, 10, 2030 (2017)
  13. Dutta AK, Maji SK, Mitra K, Sarkar A, Saha N, Ghosh AB, Adhikary B, Sens J, Actuators B Chem., 192, 578 (2014)
  14. Zhang JJ, Qi P, Li J, Zheng X, Liu P, Guan XX, Zhen GP, J. Ind. Eng. Chem., 61, 407 (2018)
  15. Ebadi M, Abedini S, Rezai O, Rad MM, J. Ind. Eng. Chem., 20(5), 3821 (2014)
  16. Wang L, Wei H, Fan Y, Gu X, Zhan J, J. Phys. Chem. C, 113, 14119 (2009)
  17. Ghanbari D, Salavati-Niasari M, J. Ind. Eng. Chem., 24, 284 (2015)
  18. Zhang S, Xu W, Zeng M, Li J, Xu J, Wang X, Dalton Trans., 42, 13417 (2013)
  19. Formo E, Lee E, Campbell D, Xia YN, Nano Lett., 8, 668 (2008)
  20. He H, Berglund SP, Xiao P, Chemelewski WD, Zhang Y, Mullins CB, J. Mater. Chem. A, 1, 12826 (2013)
  21. Salavati-Niasari M, Behfard Z, Maddahfar M, J. Ind. Eng. Chem., 20(6), 4066 (2014)
  22. Konstantatos G, Levina L, Tang J, Sargent EH, Nano Lett., 8, 4002 (2008)
  23. Vogel R, Hoyer P, Weller H, J. Phys. Chem., 98(12), 3183 (1994)
  24. Chen L, He J, Yuan Q, Liu Y, Au CT, Yin SF, J. Mater.Chem. A, 3, 1096 (2015)
  25. Paul S, Ghosh S, Barma D, De SK, Appl. Catal. B: Environ., 219, 287 (2017)
  26. Kumar PS, Sundaramurthy J, Sundarrajan S, Babu VJ, Singh G, Allakhverdiev SI, Ramakrishna S, Energy Environ. Sci., 7, 3192 (2014)
  27. Subramanian A, Annamalai A, Lee HH, Choi SH, Ryu J, Park JH, Jang JS, ACS Appl. Mater. Interfaces, 8, 19428 (2016)
  28. Lin YC, Lee MW, J. Electrochem. Soc., 161(1), H1 (2014)
  29. Han MM, Jia JH, J. Colloid Interface Sci., 481, 91 (2016)
  30. Li H, Xia Z, Chen J, Lei L, Xing J, Appl. Catal. B: Environ., 168-169, 105 (2015)
  31. Devarapalli RR, Debgupta J, Pillai VK, Shelke MV, Sci. Rep., 4, 4897 (2014)
  32. Ghobadi A, Ulusoy TG, Garifullin R, Guler MO, Okya AK, Sci. Rep., 6, 30587 (2016)
  33. Li Z, Yu LB, Liu YB, Sun SQ, Electrochim. Acta, 153, 200 (2015)
  34. Yang MQ, Zhang N, Xu YJ, ACS Appl. Mater. Interfaces, 5, 1156 (2013)
  35. Liu Q, Lu H, Shi Z, Wu F, Guo J, Deng K, Li L, ACS Appl. Mater. Interfaces, 6, 17200 (2014)
  36. Huang YC, Fan WJ, Long B, Li HB, Zhao FY, Liu ZL, Tong YX, Ji HB, Appl. Catal. B: Environ., 185, 68 (2016)
  37. Mahadik MA, Shinde PS, Cho M, Jang JS, J. Mater. Chem. A, 3, 23597 (2015)
  38. Marusak LA, Messier R, White WB, J. Phys. Chem. Solids, 41, 981 (1980)
  39. Liu XQ, Huo XH, Liu PP, Tang YF, Xu J, Liu XH, Zhou YM, Electrochim. Acta, 242, 327 (2017)
  40. Guo B, Yu K, Fu H, Hua Q, Qi R, Li H, Song H, Guo S, Zhu Z, J. Mater. Chem. A, 3, 6392 (2015)
  41. Qiu J, Zhang P, Ling M, Li S, Liu P, Zhao H, Zhang S, ACS Appl. Mater. Interfaces, 4, 3636 (2012)
  42. Huang Y, Li H, Balogun MS, Liu W, Tong Y, Lu X, Ji H, ACS Appl. Mater. Interfaces, 6, 22920 (2014)
  43. Bukhitiyarova GA, Bukhtiyarov VI, Sakaeva NS, Kaichev VV, Zolotovskii BP, J. Mol. Catal. A-Chem., 158(1), 251 (2000)
  44. Thomson JW, Cademartiri L, MacDonald M, Petrov S, Calestani G, Zhang P, Ozin GA, J. Am. Chem. Soc., 132(26), 9058 (2010)
  45. Liu ZQ, Huang WY, Zhang YM, Tong YX, CrystEngComm, 14, 8261 (2012)
  46. Zhang YY, Guo YP, Fang BJ, Chen YJ, Duan HA, Li H, Liu HZ, Appl. Catal. A: Gen., 514, 146 (2016)
  47. Cao J, Xu B, Lin H, Luo B, Chen S, Catal. Commun., 26, 204 (2012)
  48. Wei N, Cui HZ, Song Q, Zhang LQ, Song XJ, Wang K, Zhang YF, Li J, Wen J, Tian J, Appl. Catal. B: Environ., 198, 83 (2016)
  49. Ghafoor S, Ata S, Mahmood N, Arshad SN, Sci. Rep., 7, 255 (2017)
  50. Shamaila S, Sajjad AKL, Chen F, Zhang JL, Appl. Catal. B: Environ., 94(3-4), 272 (2010)
  51. Ma D, Wu J, Gao M, Xin Y, Ma T, Sun Y, J. Chem. Eng., 290, 136 (2016)
  52. Grosvenor AP, Kobe BA, McIntyre NS, Surf. Sci., 572, 217 (2004)
  53. Reddy KH, Martha S, Parida KM, RSC Adv., 2, 9423 (2012)
  54. Liu Y, Yu YX, Zhang WD, Electrochim. Acta, 59, 121 (2012)
  55. Tamirat AG, Su WN, Dubale, H.M. Chen AA, Hwang BJ, J. Mater. Chem. A, 3, 5949 (2015)
  56. Zhang N, Xu YJ, Chem. Mater., 25, 1979 (2013)
  57. Ao YH, Wang KD, Wang PF, Wang C, Hou J, Appl. Catal. B: Environ., 194, 157 (2016)
  58. Su J, Guo L, Bao N, Grimes CA, Nano Lett., 11, 1928 (2011)
  59. van de Lagemaat J, Frank AJ, J. Phys. Chem. B, 105(45), 11194 (2001)
  60. Marschall R, Adv. Funct. Mater., 24(17), 2421 (2014)
  61. Jian W, Cheng X, Huang Y, You Y, Zhou R, Sun T, Xu J, J. Chem. Engin., 328, 474 (2017)
  62. Majumder T, Hmar JJL, Debnath K, Gogurla N, Roy JN, Ray SK, Mondal SP, J. Appl. Phys., 116, 034311 (2014)
  63. Khanchandani S, Kundu S, Patra A, Ganguli AK, J. Phys. Chem. C, 117, 5558 (2013)
  64. Panmand RP, Sethi YA, Deokar RS, Late DJ, Gholap HM, Baeg JO, Kale BB, RSC Adv., 6, 23508 (2016)
  65. Ingram DB, Linic S, J. Am. Chem. Soc., 133(14), 5202 (2011)
  66. Bera S, Ghosh S, Basu RN, New J. Chem., 42, 541 (2018)
  67. Zhang Z, Yates JT, Chem. Rev., 112(10), 5520 (2012)
  68. Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K, Nat. Mater., 5(10), 782 (2006)
  69. Han M, Jia J, J. Power Sources, 239, 23 (2016)