화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.2, 265-271, February, 2019
Development of sequential batch ozonated adsorptive membrane bioreactor to mitigate fouling with reduced energy consumption
E-mail:
The present study focuses on overcoming the drawback as fouling in a membrane bioreactor (MBR), which can be alleviated by integrating advanced oxidation process, adsorption, and biofilm carriers in the activated sludge process. The optimal sludge retention time, carbon and ozone dosage was 150 minutes, 15 g and 1.5 Lmin-1, respectively. The percentage removal was observed to be above 90% for chemical oxygen demand and total organic carbon whereas for total dissolved solids was only 40% under transmembrane pressure of 20 kPa. The increase in permeate flux was 30% as compared to MBR. Sequential batch membrane bioreactor (SBMBR) showed 12% reduction in energy consumption for three hour operation at the flow rate of 0.72 L/h (transmembrane pressure 20 kPa), and it was confirmed in the SEM of carbon, membrane, UV, CV and HPLC also. The energy consumption required also confirms the less internal fouling via the extended backwash of four hours.
  1. Tu XA, Zhang S, Xu LR, Zhang MC, Zhu JR, Desalination, 261(1-2), 191 (2010)
  2. Vaiopoulou E, Misiti TM, Pavlostathis SG, Bioresour. Technol., 179, 339 (2015)
  3. Magara Y, Itoh M, Morioka T, Prog. Nucl. Energy, 29, 175 (1995)
  4. Disinfection O, Technology Fact Sheet (1999).
  5. Koros WJ, Ma YH, Shimidzu T, J. Membr. Sci., 120(2), 149 (1996)
  6. Mortensen ER, Cath TY, Brant JA, Dennett KE, Childress AE, J. Environ. Eng., 133, 1136 (2007)
  7. Zuthi MFR, Ngo HH, Guo WS, Bioresour. Technol., 122, 119 (2012)
  8. Ikehata K, Naghashkar NJ, El-Din MG, Ozone: Sci. Eng., 28, 353 (2006)
  9. Falletti L, Conte L, Ind. Eng. Chem. Res., 46(21), 6656 (2007)
  10. Czekalski N, Imminger S, Salhi E, Veljkovic M, Kleffel K, Drissner D, Hammes F, Burgmann H, Von Gunten U, Environ. Sci. Technol., 50, 11862 (2016)
  11. Wang J, Wang L, Cui E, Lu H, Korean J. Chem. Eng., 35(6), 1274 (2018)
  12. Langergraber G, Fleischmann N, Hofstaedter F, Weingartner A, Water Sci. Technol., 49, 9 (2004)
  13. Nordin N, Amir SFM, Othman MR, Int. J. Electrochem. Sci., 8, 11403 (2013)
  14. Yang X, Zhou Z, Raju MN, Cai X, Meng F, J. Environ. Sci., 57, 150 (2017)
  15. Gashtasbi F, Yengejeh RJ, Babaei AA, Korean J. Chem. Eng., 35(8), 1726 (2018)
  16. Wang D, Ji M, Wang C, Brazilian J. Chem. Eng., 31, 703 (2014)
  17. Szep A, Kertesz S, Laszlo Z, Szabo G, Hodur C, Acta Technica Corviniensis-Bulletin of Engineering, 5, 25 (2012).
  18. Hong S, Faibish RS, Elimelech M, J. Colloid Interface Sci., 196(2), 267 (1997)
  19. Kanani DA, Sun XH, Ghosh R, J. Membr. Sci., 315(1-2), 1 (2008)
  20. Velasco C, Ouammou M, Calvo JI, Hernandez A, J. Colloid Interface Sci., 266(1), 148 (2003)
  21. Rezaei H, Ashtiani FZ, Fouladitajar A, Desalination, 274(1-3), 262 (2011)
  22. Massey AJ, Schoepfer J, Brough PA, Brueggen J, Chene P, et al., Mol. Cancer Ther., 9, 4 (2010)
  23. Novakova L, Dousa M, Anal. Chem. Acta, 15, 199 (2017)
  24. Ghate V, Leong AL, Kumar A, SukBang W, Zhou W, Yuk HG, Food Microbiol., 48, 49 (2015)
  25. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J, CA: Cancer Journal for Clinicians, 66, 115 (2016).
  26. Yang M, Li Y, Wei Y, Lu J, Yu D, Liu J, Fan Y, Huan jing ke xue=Huanjing kexue, Europe PMC, 36, 2203 (2015).
  27. Lee K, Lee S, Lee SH, Kim SR, Oh HS, Park PK, Choo KH, Kim YW, Lee JK, Lee CH, Environ. Sci. Technol., 50, 10914 (2016)
  28. Hasyimah MAIN, Mohammad AW, Ind. Eng. Chem. Res., 53(39), 15213 (2014)