Korean Journal of Chemical Engineering, Vol.36, No.2, 281-286, February, 2019
One-pot preparation of LiFePO4/C composites
E-mail:,
A convenient one-pot method, called high-temperature high-energy mechanical force (HTHEMF), was successfully developed for the preparation of LiFePO4/C composites. Upon the combination of high-temperature with high-energy mechanical force, the whole synthesis process of this method is very simple and only involves two steps, the precursor preparation and the calcination step. The results of XRD, SEM, BET and electrochemical performance tests indicated that after calcination at 600 °C for 9 h, the LiFePO4/C composites have the best properties. The discharge capacity of the composites was 150.3mA h g-1 at 0.1 C. After 30 cycles test, the reversible capacity was 147mA h g-1 and the retention ratio to the initial capacity was 97.8%. The results indicated that LiFePO4/C composites with good properties can be obtained by one-pot HTHEMF method.
Keywords:LiFePO4/C Composites;Cathode Material;High-temperature High-energy Mechanical Force;One-pot
- Padhi AK, Nanjundaswamy KS, Goodenough JB, J. Electrochem. Soc., 144(4), 1188 (1997)
- Chen YK, Chinese J. Power Sources, 27, 487 (2003)
- Whittingham MS, Chem. Rev., 114(23), 11414 (2014)
- Zubi G, Dufo-Lopez R, Carvalho M, Pasaoglu G, Renew. Sust. Energ. Rev., 89, 292 (2018)
- Gong Q, He YS, Yang Y, Liao XZ, Ma ZF, J. Solid State Electrochem., 16, 1383 (2012)
- Wang G, Liu R, Chen M, Kang H, Li X, Yan K, Korean J. Chem. Eng., 29(8), 1094 (2012)
- Wang ZH, Yuan LX, Zhang WX, Huang YH, J. Alloy. Compd., 25, 532 (2012)
- Xu XL, Qi CY, Hao ZD, Wang H, Jiu JT, Nano-Micro Lett., 10(1), 1 (2018)
- Pan FF, Wang WL, J. Solid State Electrochem., 16, 1423 (2012)
- Yin YH, Gao MX, Pan HG, Shen LK, Ye X, Liu YF, Fedkiw PS, Zhang XW, J. Power Sources, 199, 256 (2012)
- Angulakshmi N, Thomas S, Nahm KS, Stephan AM, Elizabeth RN, Ionics, 17, 407 (2011)
- Liu XH, Zhao ZW, Powder Technol., 197(3), 309 (2010)
- Wang Y, Sun B, Park JS, Kim HS, J. Alloy. Compd., 509, 1040 (2011)
- Xu F, Zou JD, Zhao Q, Yan KP, Sun Y, Peng YJ, Wang GX, J. Chengdu. Uni., 37(1), 84 (2018)
- Raj H, Sil A, Ionics, 24, 2543 (2018)
- Liu YY, Cao CB, Li J, Electrochim. Acta, 55(12), 3921 (2010)
- Satyavani TVSL, Kumar AS, Rao PSVS, Eng. Sci. Technol. an Int. J., 19, 178 (2016)
- Jia LY, Shao ZB, J. Chin. J. Mater. Res., 24, 213 (2010)
- Chen D, Yan HG, Huang PY, Chin. J. Rare Metal., 27, 293 (2003)
- Fecht HJ, Hellstern E, Fu Z, Johnson WL, J. Metall. Trans., 21A, 2333 (1990)
- Chen XB, Shao ZB, Tian YW, J. Mater. Technol., 26, 67 (2011)
- Jia PQ, Shao ZB, Liu KR, Mater. Lett., 130, 71 (2014)
- Scaccia S, Carewska M, Wisniewski P, Prosini PP, Mater. Res. Bull., 38(7), 1155 (2003)
- Myung ST, Komaba S, Hirosaki N, Yashiro H, Kumagai N, Electrochim. Acta, 49(24), 4213 (2004)
- Konarova M, Taniguchi I, Powder Technol., 191(1-2), 111 (2009)
- Luo SH, Tang ZL, Lu JB, Zhang ZT, Ceram. Int., 34, 1349 (2008)
- Wang YH, Mei R, Yang XM, Ceram. Int., 40, 8439 (2014)
- Jin EM, Jin B, Jun DK, Park KH, Gu HB, Kim KW, J. Power Sources, 178(2), 801 (2008)