화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.57, No.1, 78-84, February, 2019
Carboxylic acid 이성분계의 고-액 상평형과 과잉물성, 굴절률 및 점도 편차
Solid-Liquid Equilibria and Excess Molar Volumes, Refractive Indices and Deviation in Viscosity for Binary Systems of C3-C6 Carboxylic Acids
E-mail:
초록
최근 지속 가능형 에너지로 바이오 부탄올(bio-butanol)에 관한 연구가 활발히 진행되고 있으나, 이의 상업화에는 저렴한 바이오메스 개발 및 경제적 분리 방법 등 선결해야 할 문제들이 있다. 전통적인 ABE 바이오부탄올 발효공정은 아세톤, 부탄올, 에탄올과 함께 유기산(organic acid)과 같은 부산물을 생성한다. 따라서 이들의 상호분리를 위해 아세톤, 부탄올, 에탄올 및 아세틱 산에 대한 상평형 데이터 등은 많이 발표되었으나, 탄소수가 큰 유기산에 대한 상평형 및 혼합물성 데이터는 매우 부족한 실정이다. 따라서 본 연구는 C3-C6 유기산 조합의 이성분계 혼합물에 대한 고-액 상평형과 혼합물성으로 과잉부피(VE), 굴절율 편차(ΔR) 그리고 점도 편차(Δv)를 298.15 K에서 실험적으로 측정하였다. 측정된 고-액 상평형 데이터는 NRTL, UNIQUAC식을 이용하여 상관시켰으며 RMSD, 0.5 K이하로 잘 상관되었다. 또한 동일 이성분계 혼합물에 대한 VE, ΔR 및 Δv의 혼합물성 데이터는 Redlich-Kister 다항식을 이용해 매개변수를 상관하였으며 약 0.004 이하의 표준편차로 잘 상관됨을 확인하였다.
Recently, bio-butanol is being promoted as environmentally friendly sustainable energy. However, some problems are still obstacle for commercialization of bio-butanol: the development of cheap biomass and enhancement of fermentation ratio and preparation of economical separation process for fermented products. In the conventional ABE biobutanol fermentation process, organic acids with acetone, butanol, and ethanol are produced. Therefore, it is necessary to study phase equilibrium data and mixture properties for the design and operation of separation process. However, there is lack of design data for organic acids except acetic acid contained system. In this study, therefore, binary solid-liquid equilibria (SLE) and mixture properties: the excess molar volumes (VE), molar refraction deviation (ΔR) and deviation of viscosity (Δv) at 298.15 for C3-C6 organic acid were reported. The experimental SLE data were correlated with the NRTL and UNIQUAC activity coefficient model with less than 0.5 K of root mean square deviation (RMSD). In addition, VE, ΔR and Δv for the same binary systems were satisfactorily fitted using the Redlich-Kister polynomial with less than ca. 0.004 standard deviation.
  1. Ryu BH, Chang BJ, Kim JH, Kim WN, Membrane Journal, 19(2), 157 (2009)
  2. Sang BI, Kim YH, News & Information for Chemical Engineers, 26(6), 704-709(2008).
  3. Festel GW, Chem. Eng. Technol., 31(5), 715 (2008)
  4. Rogers P, Palosaari N, Appl. And Environ. Microbiol., 53, 2761 (1987)
  5. Lee KH, Gu JE, Oh HY, Park SJ, Korean J. Chem. Eng., 35(8), 1710 (2018)
  6. Bahadur I, Singh S, Deenadayalu N, Naidoo P, Ramjugernath D, Thermo. Acta, 590, 151 (2014)
  7. Bahadur I, Naidoo P, Singh S, Ramjugernath D, Deenadayalu N, J. Chem. Thermodyn., 78, 7 (2014)
  8. Bahadur I, Deenadayalu N, Naidoo P, Ramjugernath D, J. Chem. Thermodyn., 57, 203 (2013)
  9. Renon H, Prausnitz JM, AIChE J., 14(1), 135 (1968)
  10. Abrams DS, Prausnitz JM, AIChE. J., 21, 116 (1975)
  11. Redlich O, Kister AT, Ind. Eng. Chem., 40(2), 345 (1948)
  12. B-Gii G, Esqulvel M, Ribeiro A, J. Chem. Eng. Data, 35, 202 (1990)
  13. Riddick JA, Bunger WB, Sakano TK, Wiley-Interscience, New York (1986).
  14. Lee KH, Park SJ, Fluid Phase Equilib., 436, 47 (2017)
  15. Hang IC, Park SJ, Korean J. Chem. Eng., 49, 56 (2011)
  16. Iglesias-Otero MA, Troncoso J, Carballo E, Romani L, J. Chem. Thermodyn., 40(6), 949 (2008)