화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.1, 30-36, January, 2019
마찰접합 된 STK400 Tube의 미세조직과 기계적 특성 평가
Evaluation of the Microstructures and Mechanical Properties on Friction Welded STK400 Tube
E-mail:
We evaluate the properties of friction welded STK400 steel tube in terms of the relationship between microstructures and mechanical properties. Friction welding is conducted at a rotation speed of 1,600 rpm and upset time of 3-7 sec for different thicknesses of STK 400 tubes. To analyse the grain boundary characteristic distributions(GBCDs) in the welded zone, electron backscattering diffraction(EBSD) method is introduced. The results show that a decrease in welding time (3 sec.) creates a notable increase grain refinement so that the average grain size decreases from 15.1 μm in the base material to 4.5 μm in the welded zone. These refined grains achieve significantly enhanced microhardness and a slightly higher yield and higher tensile strengths than those of the base material. In particular, all the tensile tested specimens experience a fracture aspect at the base material zone but not at the welded zone, which means a soundly welded state for all conditions.
  1. Ashton TS, Manchester University Press, London, England (1924).
  2. Burditt MF, American Foundry Society, State of Illinois, America (2010).
  3. Wei S, Lu S, Mater. Des., 35, 43 (2012)
  4. Sha QY, Li DH, Huang GJ, Guan J, Int. J. Min. Met. Mater., 20, 741 (2013)
  5. Biswas AR, Chakraborty S, Ghosh PS, Bose D, Mater. Today-Proceedings., 5, 12384 (2018)
  6. He X, Yang X, Zhang G, Li J, Hu H, Mater. Des., 40, 386 (2012)
  7. Lun N, Saha DC, Macwan A, Pan H, Wang L, Goodwin F, Zhou Y, Mater. Des., 131, 450 (2017)
  8. Thomas WM, Threadgill PL, Nicholas ED, Sci. Technol. Weld. Joi., 4, 365 (1999)
  9. Nguyen TC, Weckman DC, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 37B, 275 (2006)
  10. Celik S, Ersozlu I, Mater. Des., 30, 970 (2009)
  11. Vuherer T, Maruschak P, Samardzic I, Metalurgija, 51, 301 (2012)
  12. Junaid M, Khan FN, Rahman K, Baig MN, Opt. Laser Technol., 97, 405 (2017)
  13. Alves PHOM, Lima MSF, Raabe D, Sandim HRZ, J. Mater. Process. Technol., 252, 498 (2018)
  14. Lee CY, Choi DH, Yeon YM, Seo WC, Jung SB, J. Korean Weld. Join. Soc., 26, 556 (2008)
  15. Caligulu U, Acik M, Balalan Z, Kati N, Int. J. Steel. Struct., 15, 923 (2015)
  16. Sarsilmaz F, Kirik I, Batı S, J. Manuf. Process., 28, 131 (2017)
  17. Maalekian M, Sci. Technol. Weld. Joi., 12, 738 (2007)
  18. Uday MB, Ahmad Fauzi MN, Zuhailawati H, Ismail AB, Sci. Technol. Weld. Joi., 15, 534 (2013)
  19. Duffin FD, Bahrani AS, Wear, 26, 53 (1973)
  20. Kim EH, Fujii H, Kim JH, Song KH, Mater. Trans., 59, 503 (2018)
  21. Kim EH, Cho HH, Song KH, Korean J. Mater. Res., 27(5), 276 (2017)
  22. Vigneshwar M, Selvamani ST, Hariprasath P, Palanikumar K, Mater. Today-Proc., 5, 7853 (2018)
  23. Liang Z, Qin G, Geng P, Yang F, Meng X, Mater. Process. Tech., 25, 153 (2017)
  24. Stutz M, Pixner F, Wagner J, Reheis N, Raiser E, Kestler H, Enzinger N, Int. J. Refract. Met. H., 73, 79 (2018)
  25. Mironov S, Sato YS, Kokawa H, Acta. Mater., 56, 2602 (2008)
  26. Emami S, Saeid T, Khosroshahi RA, J. Alloy. Compd., 739, 678 (2018)
  27. McNelley TR, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 230, 88 (1997)
  28. Santos TFA, Torres EA, Lippold JC, Ramirez AJ, J. Mater. Eng. Perform., 25, 5173 (2016)
  29. Fujii H, Weld. Int., 25, 260 (2011)
  30. Fujii H, Cui L, Tsuji N, Maeda M, Nakata K, Nogi K, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 429, 50 (2006)
  31. Ashby M, Shercliff H, Cebon D, science, processing and design, p.528, Elsevier Ltd., Oxford, England (2007).
  32. Pelleg J, Mechanical Properties of Materials, p.645, Springer, Berlin, German (2013).