화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.1, 49-53, February, 2019
Furfuryl 알코올의 선택적 산화 전환에 대한 수화 이산화망간 나노와이어의 One-pot 합성
One-pot Synthesis of Hydrous MnO2 Nanowires for Selective Oxidative Transformation of Furfuryl Alcohol
E-mail:,
초록
간단한 볼-밀 방법에 의한 one-pot 합성법을 통해 수화된 이산화망간 나노와이어가 합성되었다. 이렇게 준비된 이산화망간 나노와이어는 주사 전자 현미경(SEM), 투과 전자 현미경(TEM), X-선 회절(XRD) 및 Brunauer-Emmett-Teller (BET)로 특성화되었고, 적당한 크기(4-5 nm)와 형태에서 좋은 촉매적 활성을 보였다. 기질 Furfuryl 알코올을 선택하여 톨루엔 용매를 사용하고 산소 1기압 및 온도 100 ℃에서 반응시켰다. 이산화망간 나노와이어 촉매는 뛰어난 선택성과 전환성을 보이며 월등한 furfural 수율을 나타내었다. 또한 재사용 촉매 성능 테스트에서, 5번 이상 재실험 중 촉매 활성의 손실이 거의 없어 좋은 기계적 강도를 보여주었다.
Hydrous MnO2 nanowires were easily synthesized by an one-pot synthesis with a simple hydrothermal method. As prepared hydrous MnO2 nanowires were characterized with scanning emission microscopy (SEM), transmit emission microscopy (TEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET). They showed a good catalytic activity with the suitable nano-size of 4-5 nm and morphology. The furfuryl alcohol was selected as a substrate and the reaction was carried out in a toluene solvent at 100 ℃ under the atmospheric pressure of oxygen. The hydrous MnO2 nanowire catalyst exhibited an excellent yield of furfural with the first-rate selectivity and conversion. The catalytic performance during recycle tests was also carried out and the catalyst showed a good mechanical strength with a negligible loss in the activity over five reaction cycles.
  1. Wang LC, He L, Liu Q, Liu YM, Chen M, Cao Y, He HY, Fan KN, Appl. Catal. A: Gen., 344(1-2), 150 (2008)
  2. Pina CD, Falletta E, Rossi M, Chem. Soc. Rev., 41, 350 (2012)
  3. Yang M, Ling Q, Yang H, Li C, Zhang A, Catal. Commun., 46, 238 (2014)
  4. Lange JP, Heide E, Buijtenen J, Price R, ChemSusChem., 5, 150 (2012)
  5. Mancuso AJ, Swern D, Synthesis, 3, 165 (1981)
  6. Kamimura A, Komatsu H, Moriyama T, Nozaki Y, Tetrahedron, 69, 5968 (2013)
  7. Sheldon RA, Arends IWCE, Dijksman A, Catal. Today, 57(1-2), 157 (2000)
  8. Davis SE, Zope BN, Davis RJ, Green Chem., 14, 143 (2012)
  9. Hu Z, Kerton FM, Appl. Catal. A: Gen., 332, 413 (2012)
  10. Kim YH, Hwang SK, Kim JW, Lee YS, Ind. Eng. Chem. Res., 53(31), 12548 (2014)
  11. Pasini T, Piccinini M, Blosi M, Bonelli R, Albonetti S, Dimitratos N, Green Chem., 13, 2091 (2011)
  12. Chen S, Zhu JW, Wu XD, Han QF, Wang X, ACS Nano, 4, 2822 (2010)
  13. Chen S, Liu GX, Yadegari H, Wang HH, Qiao SZ, J. Mater. Chem. A, 3, 2559 (2015)
  14. Murashima Y, Ohtani R, Matsui T, Takehira H, Yokota R, Nakamura M, Lindoy LF, Hayami S, Dalton Trans., 44, 5049 (2015)
  15. Lei JY, Lu XF, Wang W, Bian XJ, Xue YP, Wang C, Li LJ, RSC Adv., 2, 2541 (2012)
  16. Hu ZG, Zhao YF, Liu JD, Wang JT, Zhang B, Xiang X, J. Colloid Interface Sci., 483, 26 (2016)
  17. Fu X, Feng J, Wang H, Ng KM, Nanotechnology, 20, 375 (2009)
  18. Fu X, Feng J, Wang H, Ng KM, J. Solid State Chem., 183, 883 (2010)
  19. Sun H, Hua Q, Guo F, Wang Z, Huang W, Adv. Synth. Catal., 354, 569 (2012)
  20. Yuan X, Yang B, Hao J, Hu X, Zhu J, Dong H, Cryst. Res. Technol., 46, 1296 (2011)
  21. Fatiadi AJ, J. Chem. Soc. B, 889 (1971)
  22. Kamimura A, Nozaki Y, Ishikawa S, Inoue R, Nakayama M, Tetrahedron Lett., 52, 538 (2011)
  23. Massah AR, Kalbasi RJ, Azadi M, C. R. Chim., 15, 428 (2012)