화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.1, 108-113, February, 2019
고온 플라즈마를 이용한 과불화화합물의 처리 특성 연구
Study on Treatment Characteristics of Perfluorinated Compounds Using a High Temperature Plasma
E-mail:
초록
본 연구에서는 반도체 제조 공정에서 발생되는 과불화화합물을 고온 플라즈마를 활용하여 분해하고자 하였고, 분해특성을 조사하였다. 실험에 사용된 PFCs 가스는 200 L/min의 유량에 농도 5,000 ppm으로 주입하였다. 인입 전력에 따른 분해 효율 분석 결과 CF4 및 SF6 모두 12.8 kW의 전력에서 최고 효율을 나타내었고 그 이상의 전력에서는 큰차이를 나타내지 않았다. PFCs의 재결합 방지를 위한 반응수 주입 실험 결과 약 14 mL/min의 유량에서 최고 효율을 나타내었으며 14 mL/min을 기준으로 유량이 증가하거나 감소함에 따라 모두 처리효율이 감소하였다. 연구 결과 고온 플라즈마를 활용한 PFCs의 분해 특성을 파악할 수 있었고 또한 반도체 제조 공정에서 발생하는 PFCs 및 온실가스에 처리에 대한 기초를 마련하였다.
In this study, the decomposition characteristics of perfluorinated compounds generated in semiconductor manufacturing process were investigated by using a high temperature plasma. The analysis results revealed that CF4 and SF6 showed the highest efficiency at 12.8 kW power, but no significant difference was observed at the power above. Experimental results showed that the maximum efficiency was obtained at the flow rate of about 14 mL/min and the treatment efficiency decreased as the flow rate increased or decreased with respect to the flow rate of 14 mL/min. As a result, the decomposition characteristics of perflurocompounds (PFCs) using a high temperature plasma could be grasped, and also the basis for the treatment of PFCs and greenhouse gases generated in the semiconductor manufacturing process could be obtained.
  1. Innocent B, Liaigre D, Pasquier D, Ropital F, Leger JM, Kokoh KB, J. Appl. Electrochem., 39(2), 227 (2009)
  2. Park SW, Environmental Law Policy, 16, 285 (2016)
  3. Kim JH, Study on the Decomposition Treatment of Semiconductor Waste Gas (CF4) Using Plasma Torch, Ph.D Dissertation, Jeon-ju University, Jeon-ju, Korea (2018).
  4. You SJ, GHG Emission Status, Forecast and Reduction Potential, Proceedings of Green Growth : Seeking National Growth Strategy, November 13, Sejong, Korea (2008).
  5. Hong NK, under the united nations framework convention on climate change, Greenhouse Gas Inventory and Research Center, 1, 23-24 (2017).
  6. Park HW, Cha WB, Uhm SH, Appl. Chem. Eng., 29(1), 10 (2017)
  7. No IJ, Shin PK, Park DW, Kim HK, Lee SH, Park JK, Kang DH, Kim JS, Korean Institute Electrical Engineers, 7, 16 (2008)
  8. Lee CH, Jeon YN, Environ. Eng. Res., 34(10), 702 (2012)
  9. Yu SJ, Chang MB, Plasma Chem. Plasma Process., 21(3), 311 (2001)
  10. Du CM, Yan JH, IEEE T. Plasma Sci., 35(6), 1648 (2007)
  11. Hong YC, Kim HS, Uhm HS, Proceedings of the Joint International Plasma Symposium of 6th APCPST, 15th SPSM, OS 2002 and 11th KAPRA 2003, 435, 329-334 (2003).