Journal of Industrial and Engineering Chemistry, Vol.71, 167-176, March, 2019
Quantification of the available acid sites in the hydrocracking of nitrogen-containing feedstocks over USY shaped NiMo-catalysts
E-mail:,
The inhibition of Brønsted acid sites by nitrogen-containing molecules was quantified under industrially relevant hydrocracking conditions. This was achieved by testing bifunctional catalysts based on HUSY zeolite in cyclohexane hydroconversion. For ammonia partial pressures within 0.2-2.8 kPa, the percentage of inhibited Brønsted sites was superior to 98% at 623 K. Significant reduction in the ammonia content caused rather moderate variations on the number of available sites. Conversely, a temperature raise from 600 to 640 K triplicated the vacant Brønsted sites due to the significant endothermicity of ammonia desorption. The inhibiting effect of ammonia can be therefore easily modulated by temperature.
Keywords:hydrocracking;HUSY zeolite;catalyst deactivation;ammonia;operando Brønsted acidity;bifunctional catalyst
- Bertoncini F, Bonduelle-Skrzypczak A, Francis J, Guillon E, Catalysis by Transition Metal Sulphides, Editions Technip, Paris, pp.609 2013.
- Weitkamp J, ChemCatChem, 4, 292 (2012)
- Vogt ETC, Whiting GT, A Dutta Chowdhury, Advances in Catalysis 58, Academic Press, pp.143 2015.
- Primo A, Garcia H, Chem. Soc. Rev., 43, 7548 (2014)
- Mendes PSF, Silva JM, Ribeiro MF, Daudin A, Bouchy C, J. Ind. Eng. Chem., 62, 72 (2018)
- Coonradt HL, Garwood WE, Ind. Eng. Chem. Process Des. Dev., 3, 38 (1964)
- Alvarez F, Ribeiro FR, Perot G, Thomazeau C, Guisnet M, J. Catal., 162(2), 179 (1996)
- Mendes PSF, Silva JM, Ribeiro MF, Duchene P, Daudin A, Bouchy C, AIChE J., 63(7), 2864 (2017)
- Degnan TF, Kennedy CR, AIChE J., 39, 607 (1993)
- Gutierrez-Acebo E, Leroux C, Chizallet C, Schuurman Y, Bouchy C, ACS Catal., 8, 6035 (2018)
- Guisnet M, Catal. Today, 218, 123 (2013)
- Mendes PSF, Mota FM, Silva JM, Ribeiro MF, Daudin A, Bouchy C, Catal. Sci. Technol., 7, 1095 (2017)
- Bouchy C, Hastoy G, Guillon E, Martens JA, Oil Gas Sci. Technol., 64, 91 (2009)
- Martens JA, Tielen M, Jacobs PA, Studies in Surface Science and Catalysis 46, Elsevier, Amsterdam, pp. 49 1989.
- Thybaut JW, Choudhury IR, Denayer JF, Baron GV, Jacobs PA, Martens JA, Marin GB, Top. Catal., 52, 1251 (2009)
- Akhmedov VM, Al-Khowaiter SH, Catal. Rev., 49, 33 (2007)
- Csicsery SM, Zeolites, 4, 202 (1984)
- Zhang WM, Smirniotis PG, J. Catal., 182(2), 400 (1999)
- Marcilly CR, Top. Catal., 13, 357 (2000)
- Chica A, Corma A, Chem. Ing. Tech., 79(6), 857 (2007)
- Bartholomew CH, Appl. Catal. A: Gen., 212, 17 (2001)
- Argyle M, Bartholomew C, Catalysts, 5, 145 (2015)
- Sau M, Basak K, Manna U, Santra M, Verma RP, Catal. Today, 109(1-4), 112 (2005)
- Ribeiro F, Marcilly C, Guisnet M, J. Catal., 78, 267 (1982)
- Galperin LB, Appl. Catal. A: Gen., 209(1-2), 257 (2001)
- Lee SW, Ihm SK, Fuel, 134, 237 (2014)
- Mignard S, Beroudiaux O, C.R. Acad. Sci. Ser. IIb Mec. Phys. Chim. Astron. 325, 271 (1997).
- Dufresne P, Quesada A, Mignard S, Studies in Surface Science and Catalysis 53, Elsevier, Amsterdam, pp.1989 1989.
- Kobayashi M, Togawa S, Ishida K, J. Jpn. Pet. Inst., 50, 44 (2007)
- Leofanti G, Padovan M, Tozzola G, Venturelli B, Catal. Today, 41(1-3), 207 (1998)
- Sorbier L, Rosenberg E, Merlet C, Microsc. Microanal., 10, 745 (2004)
- Sorbier L, Bazer-Bachi F, Blouet Y, Moreaud M, Moizan-Basle V, Microsc. Microanal., 22, 422 (2016)
- Sorbier L, Catalysis by Transition Metal Sulphides, Technip, Paris, pp.407 2013.
- Geantet C, Sorbier L, Catalysis by Transition Metal Sulphides, Technip, Paris, pp.434 2013.
- Moulder JF, Stickle WF, Sobol PE, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin-Elmer Corp., Minnesota, 1979.
- Gandubert AD, Legens C, Guillaume D, Rebours S, Payen E, Oil Gas Sci. Technol., 62, 79 (2007)
- Marchand K, Legens C, Guillaume D, Raybaud P, Oil Gas Sci. Technol., 64, 719 (2009)
- Perez-Ramirez J, Berger RJ, Mul G, Kapteijn F, Moulijn JA, Catal. Today, 60(1-2), 93 (2000)
- McCusker LB, Baerlocher C, Zeolites and Ordered Mesoporous Materials: Progress and Prospects, Elsevier, Amsterdam, pp.41 2005.
- Mendes PSF, Taleb AL, Gay AS, Daudin A, Bouchy C, Silva JM, J. Mater. Chem. A, 5, 16822 (2017)
- Mendes PSF, Lapisardi G, Bouchy C, Rivallan M, Silva JM, Ribeiro MF, Appl. Catal. A: Gen., 504, 17 (2015)
- Grange P, Catal. Rev., 21, 135 (1980)
- Legens C, Raybaud P, Catalysis by Transition Metal Sulphides, Technip, Paris, pp.259 2013.
- Lamonier C, Payen E, Catalysis by Transition Metal Sulphides, Technip, Paris, pp.151 2013.
- Datye AK, Srinivasan S, Allard LF, Peden CH, Brenner JR, Thompson LT, J. Catal., 158(1), 205 (1996)
- Iwata Y, Araki Y, Honna K, Miki Y, Sato K, Shimada H, Catal. Today, 65(2-4), 335 (2001)
- Afanasiev P, C.R. Chim., 11, 159 (2008)
- Lamic AF, Daudin A, Brunet S, Legens C, Bouchy C, Devers E, Appl. Catal. A: Gen., 344(1-2), 198 (2008)
- Lazarraga MG, Voorhies A, Ind. Eng. Chem. Prod. Res. Dev., 12, 194 (1973)
- Chow M, Park SH, Sachtler WMH, Appl. Catal., 19, 349 (1985)
- Marcilly C, Acido- Basic Catalysis, vol. 1, Editions Technip, Paris, 2005.
- Girgis MJ, Tsao YP, Ind. Eng. Chem. Res., 35(2), 386 (1996)
- Calemma V, Peratello S, Perego C, Appl. Catal. A: Gen., 190(1-2), 207 (2000)
- Hanlon RT, Kennedy CR, Ware RA, Wong SS, Studies in Surface Science and Catalysis 75, Elsevier, Amsterdam, pp.2423 1993.
- Derouane EG, J. Mol. Catal. A-Chem., 134, 29 (1998)
- Celis-Cornejo CM, Perez-Martinez DJ, Orrego-Ruiz JA, Baldovino-Medrano VG, Energy Fuels, 32(8), 8715 (2018)
- Niwa M, Katada N, Sawa M, Murakami Y, J. Phys. Chem., 99(21), 8812 (1995)
- Niwa M, Katada N, Chem. Rec., 13, 432 (2013)
- Becker PJ, Serrand N, Celse B, Guillaume D, Dulot H, Comput. Chem. Eng., 98, 70 (2017)
- Thybaut JW, Narasimhan CSL, Denayer JF, Baron GV, Jacobs PA, Martens JA, Marin GB, Ind. Eng. Chem. Res., 44(14), 5159 (2005)