화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.71, 167-176, March, 2019
Quantification of the available acid sites in the hydrocracking of nitrogen-containing feedstocks over USY shaped NiMo-catalysts
E-mail:,
The inhibition of Brønsted acid sites by nitrogen-containing molecules was quantified under industrially relevant hydrocracking conditions. This was achieved by testing bifunctional catalysts based on HUSY zeolite in cyclohexane hydroconversion. For ammonia partial pressures within 0.2-2.8 kPa, the percentage of inhibited Brønsted sites was superior to 98% at 623 K. Significant reduction in the ammonia content caused rather moderate variations on the number of available sites. Conversely, a temperature raise from 600 to 640 K triplicated the vacant Brønsted sites due to the significant endothermicity of ammonia desorption. The inhibiting effect of ammonia can be therefore easily modulated by temperature.
  1. Bertoncini F, Bonduelle-Skrzypczak A, Francis J, Guillon E, Catalysis by Transition Metal Sulphides, Editions Technip, Paris, pp.609 2013.
  2. Weitkamp J, ChemCatChem, 4, 292 (2012)
  3. Vogt ETC, Whiting GT, A Dutta Chowdhury, Advances in Catalysis 58, Academic Press, pp.143 2015.
  4. Primo A, Garcia H, Chem. Soc. Rev., 43, 7548 (2014)
  5. Mendes PSF, Silva JM, Ribeiro MF, Daudin A, Bouchy C, J. Ind. Eng. Chem., 62, 72 (2018)
  6. Coonradt HL, Garwood WE, Ind. Eng. Chem. Process Des. Dev., 3, 38 (1964)
  7. Alvarez F, Ribeiro FR, Perot G, Thomazeau C, Guisnet M, J. Catal., 162(2), 179 (1996)
  8. Mendes PSF, Silva JM, Ribeiro MF, Duchene P, Daudin A, Bouchy C, AIChE J., 63(7), 2864 (2017)
  9. Degnan TF, Kennedy CR, AIChE J., 39, 607 (1993)
  10. Gutierrez-Acebo E, Leroux C, Chizallet C, Schuurman Y, Bouchy C, ACS Catal., 8, 6035 (2018)
  11. Guisnet M, Catal. Today, 218, 123 (2013)
  12. Mendes PSF, Mota FM, Silva JM, Ribeiro MF, Daudin A, Bouchy C, Catal. Sci. Technol., 7, 1095 (2017)
  13. Bouchy C, Hastoy G, Guillon E, Martens JA, Oil Gas Sci. Technol., 64, 91 (2009)
  14. Martens JA, Tielen M, Jacobs PA, Studies in Surface Science and Catalysis 46, Elsevier, Amsterdam, pp. 49 1989.
  15. Thybaut JW, Choudhury IR, Denayer JF, Baron GV, Jacobs PA, Martens JA, Marin GB, Top. Catal., 52, 1251 (2009)
  16. Akhmedov VM, Al-Khowaiter SH, Catal. Rev., 49, 33 (2007)
  17. Csicsery SM, Zeolites, 4, 202 (1984)
  18. Zhang WM, Smirniotis PG, J. Catal., 182(2), 400 (1999)
  19. Marcilly CR, Top. Catal., 13, 357 (2000)
  20. Chica A, Corma A, Chem. Ing. Tech., 79(6), 857 (2007)
  21. Bartholomew CH, Appl. Catal. A: Gen., 212, 17 (2001)
  22. Argyle M, Bartholomew C, Catalysts, 5, 145 (2015)
  23. Sau M, Basak K, Manna U, Santra M, Verma RP, Catal. Today, 109(1-4), 112 (2005)
  24. Ribeiro F, Marcilly C, Guisnet M, J. Catal., 78, 267 (1982)
  25. Galperin LB, Appl. Catal. A: Gen., 209(1-2), 257 (2001)
  26. Lee SW, Ihm SK, Fuel, 134, 237 (2014)
  27. Mignard S, Beroudiaux O, C.R. Acad. Sci. Ser. IIb Mec. Phys. Chim. Astron. 325, 271 (1997).
  28. Dufresne P, Quesada A, Mignard S, Studies in Surface Science and Catalysis 53, Elsevier, Amsterdam, pp.1989 1989.
  29. Kobayashi M, Togawa S, Ishida K, J. Jpn. Pet. Inst., 50, 44 (2007)
  30. Leofanti G, Padovan M, Tozzola G, Venturelli B, Catal. Today, 41(1-3), 207 (1998)
  31. Sorbier L, Rosenberg E, Merlet C, Microsc. Microanal., 10, 745 (2004)
  32. Sorbier L, Bazer-Bachi F, Blouet Y, Moreaud M, Moizan-Basle V, Microsc. Microanal., 22, 422 (2016)
  33. Sorbier L, Catalysis by Transition Metal Sulphides, Technip, Paris, pp.407 2013.
  34. Geantet C, Sorbier L, Catalysis by Transition Metal Sulphides, Technip, Paris, pp.434 2013.
  35. Moulder JF, Stickle WF, Sobol PE, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin-Elmer Corp., Minnesota, 1979.
  36. Gandubert AD, Legens C, Guillaume D, Rebours S, Payen E, Oil Gas Sci. Technol., 62, 79 (2007)
  37. Marchand K, Legens C, Guillaume D, Raybaud P, Oil Gas Sci. Technol., 64, 719 (2009)
  38. Perez-Ramirez J, Berger RJ, Mul G, Kapteijn F, Moulijn JA, Catal. Today, 60(1-2), 93 (2000)
  39. McCusker LB, Baerlocher C, Zeolites and Ordered Mesoporous Materials: Progress and Prospects, Elsevier, Amsterdam, pp.41 2005.
  40. Mendes PSF, Taleb AL, Gay AS, Daudin A, Bouchy C, Silva JM, J. Mater. Chem. A, 5, 16822 (2017)
  41. Mendes PSF, Lapisardi G, Bouchy C, Rivallan M, Silva JM, Ribeiro MF, Appl. Catal. A: Gen., 504, 17 (2015)
  42. Grange P, Catal. Rev., 21, 135 (1980)
  43. Legens C, Raybaud P, Catalysis by Transition Metal Sulphides, Technip, Paris, pp.259 2013.
  44. Lamonier C, Payen E, Catalysis by Transition Metal Sulphides, Technip, Paris, pp.151 2013.
  45. Datye AK, Srinivasan S, Allard LF, Peden CH, Brenner JR, Thompson LT, J. Catal., 158(1), 205 (1996)
  46. Iwata Y, Araki Y, Honna K, Miki Y, Sato K, Shimada H, Catal. Today, 65(2-4), 335 (2001)
  47. Afanasiev P, C.R. Chim., 11, 159 (2008)
  48. Lamic AF, Daudin A, Brunet S, Legens C, Bouchy C, Devers E, Appl. Catal. A: Gen., 344(1-2), 198 (2008)
  49. Lazarraga MG, Voorhies A, Ind. Eng. Chem. Prod. Res. Dev., 12, 194 (1973)
  50. Chow M, Park SH, Sachtler WMH, Appl. Catal., 19, 349 (1985)
  51. Marcilly C, Acido- Basic Catalysis, vol. 1, Editions Technip, Paris, 2005.
  52. Girgis MJ, Tsao YP, Ind. Eng. Chem. Res., 35(2), 386 (1996)
  53. Calemma V, Peratello S, Perego C, Appl. Catal. A: Gen., 190(1-2), 207 (2000)
  54. Hanlon RT, Kennedy CR, Ware RA, Wong SS, Studies in Surface Science and Catalysis 75, Elsevier, Amsterdam, pp.2423 1993.
  55. Derouane EG, J. Mol. Catal. A-Chem., 134, 29 (1998)
  56. Celis-Cornejo CM, Perez-Martinez DJ, Orrego-Ruiz JA, Baldovino-Medrano VG, Energy Fuels, 32(8), 8715 (2018)
  57. Niwa M, Katada N, Sawa M, Murakami Y, J. Phys. Chem., 99(21), 8812 (1995)
  58. Niwa M, Katada N, Chem. Rec., 13, 432 (2013)
  59. Becker PJ, Serrand N, Celse B, Guillaume D, Dulot H, Comput. Chem. Eng., 98, 70 (2017)
  60. Thybaut JW, Narasimhan CSL, Denayer JF, Baron GV, Jacobs PA, Martens JA, Marin GB, Ind. Eng. Chem. Res., 44(14), 5159 (2005)