화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.71, 402-409, March, 2019
Synthesis and thermal analysis of hydrophobic iron oxide nanoparticles for improving in-situ combustion efficiency of heavy oils
E-mail:,
Hydrophobic iron oxide nanoparticles (NPs) were synthesized for the oil reservoir application. Their suspensions in crude oils were subjected to thermogravimetric analysis, and kinetic model of different oxidation steps was obtained by a modified dynamic activation energy model. Results showed that NPs catalyzed initial oxygenation reactions, upgrading efficiency of cracking step, and speeded up the propagation of the combustion front. Hence, their dispersion near wellbore could increase quality of the produced oil, fuel availability, and propagation rate of the combustion front, by reducing plugging risk of pore throats and deactivation risk of fixed bed catalysts.
  1. Dayal HS, Bhushan BV, Mitra S, Sinha SK, Sur S, In-Situ Combustion: Opportunities and Anxieties, SPE, Mumbai, India, 2010 20-22 June.
  2. Sarathi PS, In-Situ Combustion Handbook . Principles and Practices, National Technical Information Service, U.S. Department of Commerce, Tulsa, Oklahoma, 1999.
  3. Burnham AK, Global Chemical Kinetics of Fossil Fuels: How to Model Maturation and Pyrolysis, Switzer-lands, 2017.
  4. Xia TX, Greaves M, Downhole Upgrading Athabasca Tar Sand Bitumen Using Thai, Porlamar, Margarita Island, Venezuela, Society of Petroleum Engineers, 12 March (2011).
  5. Hart A, Shah A, Leeke G, Greaves M, Wood J, Ind. Eng. Chem. Res., 52(44), 15394 (2013)
  6. Hart A, Greaves M, Wood J, Chem. Eng. J., 282, 213 (2015)
  7. Guo Kun, Li Hailong, Yu Zhixin, Fuel, 185, 886 (2016)
  8. Woo H, Lee K, Park S, Park K, Molecules, 19, 699 (2014)
  9. Li ZX, Luo D, Li MM, Xing XF, Ma ZZ, Xu HJC, Catalysts, 7, 219 (2017)
  10. Bhalkikar A, Gernhart ZC, Cheung CL, J. Nanomater., 16, 315 (2015)
  11. Chaturvedi S, Dave PN, Shah N, J. Saudi Chem. Soc., 16, 307 (2012)
  12. Kamali F, Shirini F, Appl. Organomet. Chem., 32, e3972 (2018)
  13. Abu-Dief AM, Abdel-Fatah SM, Beni-Suef Univ. J. Basic Appl. Sci., 7, 55 (2017)
  14. Zielinska-Jurek A, Bielan Z, Dudziak S, Wolak I, Sobczak Z, Klimczuk T, Nowaczyk G, Hupka J, Catalysts, 7, 360 (2017)
  15. Varma RS, Sustain. Chem. Process., 2, 11 (2014)
  16. He Q, Liu J, Liang J, Liu X, Ding Z, Tuo D, Li W, Appl. Sci., 8, 292 (2018)
  17. Arias LS, Pessan JP, Vieira APM, de Lima TMT, Delbem ACB, Monteiro D, Antibiotics, 7 (2018)
  18. Predescu AM, Matei E, Berbecaru AC, Pantilimon C, Dragan C, Vidu R, Predescu C, Kuncser V, Soc R, Open Sci., 5, 171525 (2018)
  19. Kwon SH, Jung HS, Choi HJ, Strecker Z, Roupec J, Colloids Surf. A: Physicochem. Eng. Asp., 555, 685 (2018)
  20. Sim B, Chae H, Choi HJ, Express Polym. Lett., 9, 736 (2015)
  21. Fumoto E, Sato S, Takanohashi TJE, Fuels, 32, 2834 (2018)
  22. Yang L, Tian J, Meng J, Zhao R, Li C, Ma J, Jin T, Molecules, 23, 562 (2018)
  23. Shafi KVPM, Ulman A, Yan XZ, Yang NL, Estournes C, White H, Rafailovich M, Langmuir, 17(16), 5093 (2001)
  24. Xue Y, Zhai Y, Chen Z, Zhang J, Sun J, Abbas M, Chen Y, Chen J, ChemCatChem, 10, 831 (2018)
  25. Ali S, Khan SA, Eastoe J, Hussaini SR, Morsy MA, Yamani ZH, Colloids Surf. A: Physicochem. Eng. Asp., 543, 133 (2018)
  26. Vyazovkin S, Isoconversional Kinetics of Thermally Stimulated Processes, Springer International Publishing, 2015.
  27. Vand V, Proc. Phys. Soc., 55, 222 (1943)
  28. Maki T, Takatsuno A, Miura K, Energy Fuels, 11(5), 972 (1997)
  29. Miura K, Maki T, Energy Fuels, 12(5), 864 (1998)
  30. Huang Z, Ye QQ, Teng LJ, J. Therm. Anal. Calorim., 119, 2015 (2015)
  31. Moradi B, Pourafshary P, Jalali F, Mohammadi M, Emadi MA, J. Nat. Gas Sci. Eng., 27, 64 (2015)
  32. Xi K, Cao Y, Haile BG, Zhu R, Jahren J, Bjørlykke K, Zhang X, Hellevang H, Mar. Pet. Geol., 76, 1 (2016)
  33. Esmaeilnezhad E, Van SL, Chon BH, Choi HJ, Schaffie M, Gholizadeh M, Ranjbar M, J. Ind. Eng. Chem., 58, 319 (2018)
  34. Vuong TKO, Tran DL, Le TL, Pham DV, Pham HN, Le Ngo TH, Do HM, Nguyen XP, Mater. Chem. Phys., 163, 537 (2015)
  35. Goswami MM, Sci. Rep., 6, 35721 (2016)
  36. Park DE, Chae HS, Choi HJ, Maity A, J. Mater. Chem. C, 3, 3150 (2015)
  37. De Berti IP, Cagnoli MV, Pecchi G, Alessandrini JL, Stewart SJ, Bengoa JF, Marchetti SG, Nanotechnology, 24, 175601 (2013)
  38. Kumar DR, Manoj D, Santhanalakshmi J, J. Nanosci. Nanotechnol., 14, 5059 (2014)
  39. Esmaeilnezhad E, Choi HJ, Schaffie M, Gholizadeh M, Ranjbar M, J. Clean Prod., 171, 45 (2018)
  40. Kolen’ko YV, Banobre-Lopez M, Rodriguez-Abreu C, Carbo-Argibay E, Deepak FL, Petrovykh DY, Cerqueira MFT, Kamali S, Kovnir K, Shtansky DV, J. Phys. Chem. C, 118, 28322 (2014)
  41. Karimian M, Schaffie M, Fazaelipoor MH, J. Therm. Anal. Calorim., 125, 301 (2016)
  42. Varfolomeev MA, Nurgaliev DK, Kok MV, Pet. Sci. Technol., 34, 1624 (2016)
  43. Kok MV, Topa E, J. Therm. Anal. Calorim., 122, 955 (2015)
  44. Khansari Z, Gates ID, Mahinpey N, Fuel, 115, 534 (2014)
  45. Turta A, Enhanced Oil Recovery Field Case Studies, Gulf Professional Publishing, Boston, p.447 2013.
  46. Schaffie M, Ranjbar M, J. Pet. Sci. Eng., 26, 57 (2000)
  47. Burger JG, Sahuquet BC, Soc. Pet. Eng., 12, 410 (1972)
  48. Burger J, Sourieau P, Combarnous M, Thermal Methods of Oil Recovery, Gulf Publishing Company, Book Division, 1985.
  49. Khansari Z, Kapadia P, Mahinpey N, Gates ID, Energy, 64, 419 (2014)
  50. Pu WF, Liu PG, Li YB, Jin FY, Liu ZZ, Ind. Eng. Chem. Res., 54(46), 11525 (2015)
  51. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N, Thermochim. Acta, 520(1-2), 1 (2011)
  52. Sbirrazzuoli N, Macromol. Chem. Phys., 208, 1592 (2007)
  53. Shahcheraghi SH, Khayati GR, Ranjbar M, J. Therm. Anal. Calorim., 122, 175 (2015)
  54. Hart A, J. Pet. Explor. Prod. Technol., 4, 427 (2014)