화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.71, 435-444, March, 2019
Glucose biofuel cells using the two-step reduction reaction of bienzyme structure as cathodic catalyst
E-mail:,
Glucose oxidase (GOx) and horseradish peroxidase (HRP) based bienzymes are entrapped in a polyethylenimine (PEI) matrix and then immobilized onto a substrate consisting of carbon nanotube (CNT) and pyrene boronic acid (PBA) (CNT/PBA/[HRP/PEI/GOx]). This structure is considered as the cathodic catalyst for the glucose biofuel cell (GBFC). According to the performance evaluations of the catalyst, the catalytic activity for the oxygen reduction reaction (ORR) is improved because of the bienzyme entrapped well in PEI, and also, because the CNT/PBA substrate promotes electron transfer by the formation of π-π stacking and the reduction of the electron transfer pathway distance. The high ORR reaction rate (38.7 μA cm-2 in the injection of 5 mM glucose) is clear evidence of an excellent catalyst. In addition, when the catalyst is adopted for the operation of a membrane GBFC, a high-power density (77.9 ± 2.3 μW cm-2) is achieved, as well as good storage stability (81% of its initial activity even after 4 weeks) and a high glucose consumption rate (8.7 ± 0.2% from its initial concentration during 7 operating hours). Alternatively, when the catalyst is used for the membraneless GBFC operation, a relatively highpower density of 18 μW cm-2 is also obtained.
  1. Frattini D, Accardo G, Ferone C, Cioffi R, Mater. Res. Bull., 88, 188 (2017)
  2. Frattini D, Falcucci G, Minutillo M, Ferone C, Cioffi R, Jannelli E, Chem. Eng. Trans., 49, 85 (2016)
  3. Southcott M, MacVittie K, Halamek J, Halamkova L, Jemison WD, Lobel R, Katz E, Phys. Chem. Chem. Phys., 15, 6278 (2013)
  4. MacVittie K, Halamek J, Halamkova L, Southcott M, Jemison WD, Lobel R, Katz E, Energy Environ. Sci., 6, 81 (2013)
  5. Rapoport BI, Kedzierski JI, Sarpeshkar R, PLoS One, 7, e38436 (2012)
  6. Inamuddin, Beenish, Naushad M, Korean J. Chem. Eng., 33(1), 120 (2016)
  7. Christwardana M, Chung Y, Kwon Y, Nanoscale, 9, 1993 (2017)
  8. Barton SC, Pickard M, Vazquez-Duhalt R, Heller A, Biosens. Bioelectron., 17, 1071 (2002)
  9. Chung Y, Christwardana M, Tannia DC, Kim KJ, Kwon Y, J. Power Sources, 360, 172 (2017)
  10. Khan M, Park SY, J. Colloid Interface Sci., 457, 281 (2015)
  11. Mackey D, Killard AJ, Ambrosi A, Smyth MR, Sens. Actuators B-Chem., 122, 395 (2007)
  12. Liao CA, Wu Q, Wei QC, Wang QG, Chem. Eur. J., 21, 12620 (2015)
  13. Razzaghi M, Karimi A, Aghdasinia H, Joghataei MT, Korean J. Chem. Eng., 34(11), 2870 (2017)
  14. Elouarzaki K, Bourourou M, Holzinger M, Le Goff A, Marks RS, Cosnier S, Energy Environ. Sci., 8, 2069 (2015)
  15. Dai Z, Bao J, Yang X, Ju H, Biosens. Bioelectron., 23, 1070 (2008)
  16. Delvaux M, Walcarius A, Demoustier-Champagne S, Biosens. Bioelectron., 20, 1587 (2005)
  17. Tian JY, Huang T, Wang P, Lu JS, J. Electrochem. Soc., 162(12), B319 (2015)
  18. Reuillard B, Le Goff A, Holzinger M, Cosnier S, J. Mater. Chem. B, 2, 2228 (2014)
  19. Krikstolaityte V, Oztekin Y, Kuliesius J, Ramanaviciene A, Yazicigil Z, et al., Electroanalysis, 25, 2677 (2013)
  20. Christwardana M, Chung Y, Kwon Y, NPG Asia Mater., 9, e386 (2017)
  21. Chung Y, Tannia DC, Kwon Y, Chem. Eng. J., 334, 1085 (2018)
  22. Christwardana M, Kwon Y, J. Power Sources, 299, 604 (2015)
  23. Christwardana M, Enzyme Microb. Technol., 106, 1 (2017)
  24. Christwardana M, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 3009 (2017)
  25. Moddeman WE, Burke AR, Bowling WC, Foose DS, Surf. Interface Anal., 14, 224 (1989)
  26. Ong CW, Huang H, Zheng B, Kwok RWM, Hui YY, Lau WM, J. Appl. Phys., 95, 3527 (2004)
  27. Cerqueira MRF, Santos MSF, Matos RC, Gutz IGR, Angnes L, Microchem. J., 118, 231 (2015)
  28. Berglund GI, Carlsson GH, Smith AT, Szoke H, Henriksen A, Hajdu J, Nature, 417, 463 (2002)
  29. Singh K, Singh BP, Chauhan R, Basu T, J. Appl. Polym. Sci., 125, E235 (2012)
  30. Jia W, Schwamborn S, Jin C, Xia W, Muhler M, Schuhmann W, Stoica L, Phys. Chem. Chem. Phys., 12, 10088 (2010)
  31. Agnes C, Reuillard B, Le Goff A, Holzinger M, Cosnier S, Electrochem. Commun., 34, 105 (2013)
  32. Vlasits J, Jakopitsch C, Schwanninger M, Holubar P, Obinger C, Febs Lett., 581, 320 (2007)
  33. Park Jh, Ahn DJ, Korean J. Chem. Eng., 34(7), 2092 (2017)
  34. Sobhan A, Oh JH, Park MK, Kim SW, Park CH, Lee JY, Korean J. Chem. Eng., 35(1), 172 (2018)
  35. Song YH, Chen JY, Liu HY, Song YG, Xu FG, Tan HL, Wang L, Electrochim. Acta, 158, 56 (2015)
  36. Milton RD, Hickey DP, Abdellaoui S, Lim K, Wu F, Tan B, Minteer SD, Chem. Sci., 6, 4867 (2015)
  37. Treimer S, Tang A, Johnson DC, Electroanalysis, 14, 165 (2002)
  38. Adediran SA, Lambeir AM, FEBS J., 186, 571 (1989)
  39. Bard AJ, Faulkner LR, Leddy J, Zoski CG, Electrochemical Methods, 1980.
  40. Song C, Zhang J, PEM Fuel Cell Electrocatalysts and Catalyst Layers, pp.89, 2008.
  41. Yeager E, J. Mol. Catal., 38, 5 (1986)
  42. Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916 (2017)
  43. Christwardana M, Kim DH, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 180 (2018)
  44. Tozer GM, Prise VE, Cunningham VJ, Angiogenesis Protocols, Humana Press, New York, pp.271 2009.
  45. Tsuchida T, Yoda K, Enzyme Microb. Technol., 3, 326 (1981)
  46. Temocin Z, Yigitoglu M, Bioprocess Biosyst. Eng., 32, 467 (2009)
  47. Wang X, Falk M, Ortiz R, Matsumura H, Bobacka J, Ludwig R, Bergelin M, Gorton L, Shleev S, Biosens. Bioelectron., 31, 219 (2012)
  48. Wang S, Patlolla A, Iqbal Z, ECS Trans., 19, 55 (2009)
  49. Giroud F, Milton RD, Tan BX, Minteer SD, ACS Catal., 5, 1240 (2015)