화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.3, 411-422, March, 2019
The effects of main anoxic section oxidation-reduction potential on the metabolism of PHA and TP in continuous-flow single-sludge treatment system
E-mail:
The experimental results and material balance analysis in this paper revealed the regularity of poly-hydroxy alkanoates (PHA) and total phosphorus (TP) metabolism in a continuous-flow single-sludge wastewater treatment system under different main anoxic section oxidation-reduction potential (ORPan) conditions. We also evaluated the effectiveness of the operation control parameters of ORPan as the continuous-flow single-sludge sewage treatment system from the aspect of the reaction mechanism. Using a programmable logic controller (PLC) automatic control system to take the circulating flow in nitrification as the controlled variable based on the feedback control structure, an experimental study was carried out under the condition of ORPan setting value of -143mV, -123mV, -105mV, -95mV, -72 mV and -57mV, respectively, with other operational design parameters remaining unchanged. Influent water quality of chemical oxygen demand/total nitrogen (COD/TN) was 5.0±0.6. The results showed that when ORPan was set at .95mV, the maximum values of PHA synthesis and storage rate, PHA degradation rate, phosphorus release rate and phosphorus absorption rate in anaerobic and pre-anoxic segments were 82.34, 7.90, 47.31, 14.27, 1.50 and 8.52mg/ (L·h), respectively. According to the metabolic mechanism of PHA and TP, ORPan was further proved to be the operation control parameter of the continuous-flow single-sludge sewage treatment system, and when the COD/TN value was 5.0±0.6, the optimal setting value was -95mV
  1. Sun Y, Chen Z, Wu GX, Wu QY, Zhang F, Niu ZB, Hu HY, J. Clean Prod., 131, 1 (2016)
  2. Yang Y, Ok YS, Kim KH, Kwon EE, Tsang YF, Sci. Total Environ., 596-597, 303 (2017)
  3. Guerrero J, Guisasola A, Baeza JA, Water Res., 45, 4793 (2011)
  4. Zhu YX, Tu XJ, Chai XS, Wei Q, Guo LN, Bioresour. Technol., 251, 7 (2018)
  5. Zeng W, Li L, Yang YY, Wang XD, Peng YZ, Enzyme Microb. Technol., 48(2), 134 (2011)
  6. Yuan QY, Oieszkiewicz J, Desalination Water Treatment, 22, 72 (2010)
  7. Kapagiannidis AG, Zafiriadis I, Aivasidis A, New Biotechnol., 30, 227 (2013)
  8. Zou HM, Wang Y, Bioresour. Technol., 221, 87 (2016)
  9. Souza SM, Araujo O, Coelho MAZ, Bioresour. Technol., 99(8), 3213 (2008)
  10. Vaiopoulou E, Aivasidis A, Chemosphere, 72, 1062 (2008)
  11. Duan JM, Li W, Zhao K, Krampe J, Desalination Water Treatment, 40, 24 (2012)
  12. Peng L, Dai XH, Liu YW, Sun J, Song SX, Ni BJ, Chemosphere, 197, 430 (2018)
  13. Bortone G, Libelli SM, Tilche A, Wanner J, Water Sci. Technol., 40, 177 (1999)
  14. Wang J, Wang L, Cui E, Lu H, Korean J. Chem. Eng., 35(6), 1274 (2018)
  15. Nancharaiah YV, Mohan SV, Lens PNL, Bioresour. Technol., 215, 173 (2016)
  16. Cardete MA, Mata-Alvarez J, Dosta J, Nieto-Sanchez R, J. Environ. Chem. Eng., 5, 3472 (2017)
  17. Wang XL, Yin J, Gao S, Environ. Sci., 33, 175 (2012)
  18. Zhu GB, Peng YZ, Wang SY, Wu SY, Ma B, Chem. Eng. J., 131(1-3), 319 (2007)
  19. Soares A, Kampas P, Maillard S, Wood E, Brigg J, Tillotson M, Parsons SA, Cartmell E, J. Hazard. Mater., 175(1-3), 733 (2010)
  20. Bergendahl J, Stevens L, Environ. Progress, 24, 214 (2005)
  21. Pagacova P, Blstakova A, Drtil M, Continually Measured ORP and pH Signal for Control of Nitrogen Removal, Springer Netherlands (2002).
  22. Ruano MV, Ribes J, Seco A, Ferrer J, Chem. Eng. J., 183, 212 (2012)
  23. Ma Y, Peng YZ, Wang SY, China Environ. Sci., 25, 252 (2005)
  24. Kim HT, Kim GS, Shin SW, Oh SH, Kim KH, KSCE J. Civil Eng., 9, 73 (2005)
  25. Liu X, Chen QW, Zhu L, J. Environ. Sci., 47, 174 (2016)
  26. Chuang SH, Ouyang CF, Water Res., 34, 2283 (2000)
  27. Munchen IG, Braunschweig IK, Design of Single Stage Activated Sludge Wastewater Treatment Plant, GFA Publishing Company, Hennef (2000).
  28. Water Environment Federation, Design of Municipal Wastewater Treatment Plants, New York (2010).
  29. Shanghai Municipal Engineering Design Institute (Group) Co., LTD, Code for design of outdoor wastewater engineering, China Planning Press, Beijing (2016).
  30. Wang XF, Method for Monitoring and Analyzing Water and Waste Water, China Environmental Science Press Pub, Beijing (2002).
  31. Maizel AC, Remucal CK, Water Res., 122, 42 (2017)
  32. Wang XL, Song TH, Yu XD, Desalination Water Treatment, 56, 1877 (2015)
  33. Wang XL, Song TH, Yin Y, Environ. Sci., 36, 2617 (2015)
  34. Caulet P, Bujon B, Philippe JP, Lefevre F, Audic JM, Water Sci. Technol., 37, 41 (1998)
  35. Kuba T, van Loosdrechtt MCM, Water Sci. Technol., 27, 241 (1993)
  36. Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D, IWA Publishing, London (2010).
  37. Boontian N, Eng. Technol., 64, 984 (2012)
  38. Bi DS, Guo XP, Chen DH, Water Sci. Technol., 67, 1953 (2013)
  39. Kim MG, Nakhla G, Water Environ. Res., 82, 69 (2010)
  40. Qi R, Yu T, Li ZL, Li D, J. Environ. Sci., 24, 571 (2012)