화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.2, 92-96, February, 2019
Sol-Gel법을 이용한 CuxCo3-xO4 산소 발생 촉매의 합성 및 전기화학 특성 분석
Electrochemical Analysis of CuxCo3-xO4 Catalyst for Oxygen Evolution Reaction Prepared by Sol-Gel Method
E-mail:
초록
Transition metal oxide is widely used as a water electrolysis catalyst to substitute for a noble metal catalyst such as IrO2 and RuO2. In this study, the sol-gel method is used to synthesize the CuxCo3-xO4 catalyst for the oxygen evolution reaction (OER),. The CuxCo3-xO4 is synthesized at various calcination temperatures from 250 °C to 400 °C for 4 h. The CuxCo3- xO4 synthesized at 300 oC has a perfect spinel structure without residues of the precursor and secondary phases, such as CuO. The particle size of CuxCo3-xO4 increases with an increase in calcination temperature. Amongst all the samples studied, CuxCo3-xO4, which is synthesized at 300?, has the highest activity for the OER. Its onset potential for the OER is 370 mV and the overpotential at 10 mA/cm2 is 438 mV. The tafel slope of CuxCo3-xO4 synthesized at 300 °C has a low value of 58 mV/dec. These results are mainly explained by the increase in the available active surface area of the CuxCo3-xO4 catalyst.
  1. Datta MK, Kadakia K, Velikokhatnyi OI, Jampani PH, Chung SJ, Poston JA, Manivannan A, J. Mater. Chem. A, 1, 4026 (2013)
  2. Xu W, Scott K, J. Mater. Chem., 21, 12344 (2011)
  3. Carmo M, Fritz DL, Mergel J, Stolten D, Int. J. Hydrog. Energy, 38, 4091 (2013)
  4. Bocca C, Barbucci A, Delucchi M, Cerisola G, Int. J. Hydrog. Energy, 24(1), 21 (1999)
  5. Long X, Li J, Xiao S, Yan K, Wang Z, Chen H, Yang S, Angew. Chem., 126, 7714 (2014)
  6. Choi WS, Jang MJ, Park YS, Lee KH, Lee JY, Seo MH, Choi SM, ACS Appl. Mater. Interfaces, 10, 38663 (2018)
  7. Wei TY, Chen CH, Chien HC, Lu SY, Hu CC, Adv. Mater., 22(3), 347 (2010)
  8. Hamdani M, Singh RN, Chartier P, Int. J. Electrochem. Sci., 5, 556 (2010)
  9. Nikolov I, Darkaoui R, Zhecheva E, Stoyanova R, Dimitrov N, Vitanov T, J. Electroanal. Chem., 429(1-2), 157 (1997)
  10. De Koninck M, Poirier SC, Marsan B, J. Electrochem. Soc., 154(4), A381 (2007)
  11. Koo TW, Park CS, Kim YD, J. Korean Phys. Soc., 67, 1558 (2015)
  12. Park YS, Park CS, Kim CH, Kim YD, J. Korean Phys. Soc., 69, 1187 (2016)
  13. Barbi B, Santos JP, Serrini P, Gibson PN, Horrillo MC, Manes L, Sens. Actuators B-Chem., 25, 559 (1995)
  14. Lal B, Singh NK, Samuel S, Singh RN, J. New Mat. Electrochem. Syst., 2, 59 (1999)
  15. Zhang Q, Wei ZD, Liu C, Liu X, Qi XQ, Chen SG, Ding W, Ma Y, Shi F, Zhou YM, Int. J. Hydrog. Energy, 37(1), 822 (2012)
  16. Marshall A, Borresen B, Hagen G, Tsypkin M, Tunold R, Mater. Chem. Phys., 94(2-3), 226 (2005)
  17. De Koninck M, Poirier SC, Marsan B, J. Electrochem. Soc., 153(11), A2103 (2006)
  18. Lassali TAF, Boodts JFC, Bulhoes LOS, J. Non-Cryst. Solids, 273, 129 (2000)
  19. Liu YC, Koza JA, Switzer JA, Electrochimica Acta, 140, 359 (2014)
  20. Reier T, Oezaslan M, Strasser P, ACS Catal., 2, 1765 (2012)
  21. Locke E, Jiang S, Beaumont S, Top. Catal., 61, 977 (2018)