Korean Journal of Materials Research, Vol.29, No.2, 92-96, February, 2019
Sol-Gel법을 이용한 CuxCo3-xO4 산소 발생 촉매의 합성 및 전기화학 특성 분석
Electrochemical Analysis of CuxCo3-xO4 Catalyst for Oxygen Evolution Reaction Prepared by Sol-Gel Method
E-mail:
초록
Transition metal oxide is widely used as a water electrolysis catalyst to substitute for a noble metal catalyst such as IrO2 and RuO2. In this study, the sol-gel method is used to synthesize the CuxCo3-xO4 catalyst for the oxygen evolution reaction (OER),. The CuxCo3-xO4 is synthesized at various calcination temperatures from 250 °C to 400 °C for 4 h. The CuxCo3- xO4 synthesized at 300 oC has a perfect spinel structure without residues of the precursor and secondary phases, such as CuO. The particle size of CuxCo3-xO4 increases with an increase in calcination temperature. Amongst all the samples studied, CuxCo3-xO4, which is synthesized at 300?, has the highest activity for the OER. Its onset potential for the OER is 370 mV and the overpotential at 10 mA/cm2 is 438 mV. The tafel slope of CuxCo3-xO4 synthesized at 300 °C has a low value of 58 mV/dec. These results are mainly explained by the increase in the available active surface area of the CuxCo3-xO4 catalyst.
- Datta MK, Kadakia K, Velikokhatnyi OI, Jampani PH, Chung SJ, Poston JA, Manivannan A, J. Mater. Chem. A, 1, 4026 (2013)
- Xu W, Scott K, J. Mater. Chem., 21, 12344 (2011)
- Carmo M, Fritz DL, Mergel J, Stolten D, Int. J. Hydrog. Energy, 38, 4091 (2013)
- Bocca C, Barbucci A, Delucchi M, Cerisola G, Int. J. Hydrog. Energy, 24(1), 21 (1999)
- Long X, Li J, Xiao S, Yan K, Wang Z, Chen H, Yang S, Angew. Chem., 126, 7714 (2014)
- Choi WS, Jang MJ, Park YS, Lee KH, Lee JY, Seo MH, Choi SM, ACS Appl. Mater. Interfaces, 10, 38663 (2018)
- Wei TY, Chen CH, Chien HC, Lu SY, Hu CC, Adv. Mater., 22(3), 347 (2010)
- Hamdani M, Singh RN, Chartier P, Int. J. Electrochem. Sci., 5, 556 (2010)
- Nikolov I, Darkaoui R, Zhecheva E, Stoyanova R, Dimitrov N, Vitanov T, J. Electroanal. Chem., 429(1-2), 157 (1997)
- De Koninck M, Poirier SC, Marsan B, J. Electrochem. Soc., 154(4), A381 (2007)
- Koo TW, Park CS, Kim YD, J. Korean Phys. Soc., 67, 1558 (2015)
- Park YS, Park CS, Kim CH, Kim YD, J. Korean Phys. Soc., 69, 1187 (2016)
- Barbi B, Santos JP, Serrini P, Gibson PN, Horrillo MC, Manes L, Sens. Actuators B-Chem., 25, 559 (1995)
- Lal B, Singh NK, Samuel S, Singh RN, J. New Mat. Electrochem. Syst., 2, 59 (1999)
- Zhang Q, Wei ZD, Liu C, Liu X, Qi XQ, Chen SG, Ding W, Ma Y, Shi F, Zhou YM, Int. J. Hydrog. Energy, 37(1), 822 (2012)
- Marshall A, Borresen B, Hagen G, Tsypkin M, Tunold R, Mater. Chem. Phys., 94(2-3), 226 (2005)
- De Koninck M, Poirier SC, Marsan B, J. Electrochem. Soc., 153(11), A2103 (2006)
- Lassali TAF, Boodts JFC, Bulhoes LOS, J. Non-Cryst. Solids, 273, 129 (2000)
- Liu YC, Koza JA, Switzer JA, Electrochimica Acta, 140, 359 (2014)
- Reier T, Oezaslan M, Strasser P, ACS Catal., 2, 1765 (2012)
- Locke E, Jiang S, Beaumont S, Top. Catal., 61, 977 (2018)