화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.72, 18-30, April, 2019
Utilization of the internal electric field in semiconductor photocatalysis: A short review
E-mail:, ,
Photocatalysis denotes as an environmental friendly chemical transformation technique. The rate of photoinduced electron.hole recombination is one of the difficulties encountered in semiconductor photocatalysis.Differentalternative systems were suggested to over come this problem and thereby improve the efficiency of the photocatalyst. Extensively investigated methods were not effective to achieve the required efficiencyof the catalyst, because the cataly stcharge carrierseparation is poor. Among theexplored methods, the electron.hole separation using built-in electric field attracts considerable attention as a new concept. A spontaneous potential from the ferroelectric material strongly minimizes the number of photoinduced electron.hole recombination. On the other hand, the spontaneous potential was compensated by the external and internal charge and to alternate the electric field, thermal, mechanical and electric field were applied as an external force. The external force was exerted by different methods, including passage of ultrasound waves, fluid eddy, flowing water, mechanical distribution and changing the temperature. Preliminary work has been carried out using semiconductor-Ferroelectric nanohybrid piezophotocatalyst in environmental remediation for the removal of an organic color and non-colored pollutants. Later, the application was extended to hydrogen production from water splitting and antibacterial material development. Furthermore, the light free catalysts such as piezocatalyst, dark catalyst and vibration catalyst are also examined for last decades. In this review, we summarize the work carried out by the internal electric field induced photocatalyst electron.hole separation (Piezo photocatalyst) and temperature triggered catalyst (Pyrocatalyst). Light free or vibration catalyst (piezocatalyst) work also briefly covered in this review. Overall, themanuscript was discussed in four categories of materials,including BaTiO3, ZnO, other ABO3 structures and two-dimensional nanostructures including MoS2, WS2, MoSe2. The challenges encountered, and the present and future scope of the work is also discussed in this review.
  1. Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N, Stephenson G, J. Appl. Phys., 100, 051606 (2006)
  2. Liu Z, Paterson AR, Wu H, Gao P, Ren W, Ye ZG, J. Mater. Chem. C, 5, 3916 (2017)
  3. Whatmore RW, Electr. Mater., 283 (1991).
  4. Yun WS, Urban JJ, Gu Q, Park H, Nano Lett., 2, 447 (2002)
  5. Bhatia D, Sharma H, Meena R, Palkar V, Sens. Biosens. Res., 9, 45 (2016)
  6. Zhang R, Hummelgard M, Olsen M, Ortegren J, Olin H, Semicond. Sci. Technol., 32, 054002 (2017)
  7. Lee FY, Jo HR, Lynch CS, Pilon L, Smart Mater. Struct., 22, 025038 (2013)
  8. Gan W, Majid WA, Smart Mater. Struct., 23, 045026 (2014)
  9. Xiao Q, Sarina S, Bo A, Jia J, Liu H, Arnold DP, Huang Y, Wu H, Zhu H, ACS Catal., 4, 1725 (2014)
  10. Raghavan N, Thangavel S, Venugopal G, Appl. Mater. Today, 7, 246 (2017)
  11. Raj AT, Thangavel S, Rose A, Jipsa C, Jose M, Nallamuthu G, Kim SJ, Venugopal G, J. Nanosci. Nanotechnol., 16, 2541 (2016)
  12. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X, Chem. Soc. Rev., 43, 5234 (2014)
  13. Shi M, Wei W, Jiang Z, Han H, Gao J, Xie J, RSC Adv., 6, 25255 (2016)
  14. Tu W, Zhou Y, Li H, Li P, Zou Z, Nanoscale, 7, 14232 (2015)
  15. Jiao W, Wang L, Liu G, Lu GQ, Cheng HM, ACS Catal, 2, 1854 (2012)
  16. Wan D, Zhao Y, Cai Y, Asmara T, Huang Z, Chen J, Hong J, Yin SM, Nelson C, Motapothula M, Nat. Commun., 8, 15070 (2017)
  17. Nakabayashi Y, Nosaka Y, Phys. Chem. Chem. Phys., 17, 30570 (2015)
  18. Liu Z, Li X, Mayyas M, Koshy P, Hart JN, Sorrell CC, Cryst. Eng. Comm., 19, 4766 (2017)
  19. Gordon TR, Cargnello M, Paik T, Mangolini F, Weber RT, Fornasiero P, Murray CB, J. Am. Chem. Soc., 134(15), 6751 (2012)
  20. Guo J, Yuan S, Jiang W, Yue H, Cui Z, Liang B, RSC Adv., 6, 4090 (2016)
  21. Tu WG, Zhou Y, Zou ZG, Adv. Mater., 26(27), 4607 (2014)
  22. Bai S, Jiang W, Li Z, Xiong Y, ChemNanoMat, 1, 223 (2015)
  23. Divya K, Xavier MM, Vandana P, Reethu V, Mathew S, New J. Chem., 41, 6445 (2017)
  24. Chandran HT, Thangavel S, Jipsa C, Venugopal G, Mater. Sci. Semicond. Process, 27, 212 (2014)
  25. Thangavel S, Thangavel S, Raghavan N, Alagu R, Venugopal G, J. Phys. Chem. Solids, 110, 266 (2017)
  26. Chen YC, Pu YC, Hsu YJ, J. Phys. Chem. C, 116, 2967 (2012)
  27. Wu L, Li F, Xu YY, Zhang JW, Zhang DQ, Li GS, Li HX, Appl. Catal. B: Environ., 164, 217 (2015)
  28. Ansari SA, Khan MM, Ansari MO, Cho MH, New J. Chem., 40, 3000 (2016)
  29. Djurisic AB, Leung YH, Ng AMC, Mater. Horiz., 1, 400 (2014)
  30. Liu W, Cai J, Li Z, ACS Sustainable Chem. Eng., 3, 277 (2015)
  31. Pu YC, Chou HY, Kuo WS, Wei KH, Hsu YJ, Appl. Catal. B: Environ., 204, 21 (2017)
  32. Xu CH, Chiu YF, Yeh PW, Chen JZ, Mater. Res. Express, 3, 085002 (2016)
  33. Zheng DD, Zhang GG, Hou YD, Wang XC, Appl. Catal. A: Gen., 521, 2 (2016)
  34. Yang N, Liu Y, Wen H, Tang Z, Zhao H, Li Y, Wang D, ACS Nano, 7, 1504 (2013)
  35. Radich JG, Krenselewski AL, Zhu J, Kamat PV, Chem. Mater., 26, 4662 (2014)
  36. Su R, Shen Y, Li L, Zhang D, Yang G, Gao C, Yang Y, Small, 11, 202 (2015)
  37. Cui Y, Briscoe J, Dunn S, Chem. Mater., 25, 4215 (2013)
  38. Cui Y, Goldup SM, Dunn S, RSC Adv., 5, 30372 (2015)
  39. Cui Y, Briscoe J, Wang Y, Tarakina NV, Dunn S, ACS Appl. Mater. Interfaces, 9, 24518 (2017)
  40. Li S, Sang Y, Chang S, Huang X, Zhang Y, Yang R, Jiang H, Liu H, Wang ZL, Nano Lett., 15, 2372 (2015)
  41. Lan S, Feng J, Xiong Y, Tian S, Liu S, Kong L, Environ. Sci. Technol., 51, 6560 (2017)
  42. Huang HW, Tu SC, Du X, Zhang YH, J. Colloid Interface Sci., 509, 113 (2018)
  43. Yuan B, Wu J, Qin N, Lin E, Bao D, ACS Appl. Nano Mater., 1, 5119 (2018)
  44. Lin E, Wu J, Qin N, Yuan B, Bao D, Catal. Sci. Technol., 8, 4788 (2018)
  45. Li S, Zhang M, Gao Y, Bao B, Wang S, Nano Energy, 2, 1329 (2013)
  46. Gao Y, Li S, Zhao B, Zhai Q, Lita A, Dalal NS, Kroto HW, Acquah SF, Carbon, 77, 705 (2014)
  47. Xue X, Zang W, Deng P, Wang Q, Xing L, Zhang Y, Wang ZL, Nano Energy, 13, 414 (2015)
  48. Tan CF, Ong WL, Ho GW, ACS Nano, 9, 7661 (2015)
  49. Chang JH, Lin HN, Mater. Lett., 132, 134 (2014)
  50. Sun C, Fu Y, Wang Q, Xing L, Liu B, Xue X, RSC Adv., 6, 87446 (2016)
  51. Guo X, Fu Y, Hong D, Yu B, He H, Wang Q, Xing L, Xue X, Nanotechnology, 27, 375704 (2016)
  52. You H, Wu Z, Jia Y, Xu X, Xia Y, Han Z, Wang Y, Chemosphere, 183, 528 (2017)
  53. Hong D, Zang W, Guo X, Fu Y, He H, Sun J, Xing L, Liu B, Xue X, ACS Appl. Mater. Interfaces, 8, 21302 (2016)
  54. Wang L, Liu S, Wang Z, Zhou Y, Qin Y, Wang ZL, ACS Nano, 10, 2636 (2016)
  55. Chen X, Liu L, Feng Y, Wang L, Bian Z, Li H, Wang ZL, Mater. Today, 20, 501 (2017)
  56. Wang K, Fang Z, Huang X, Feng W, Wang Y, Wang B, Liu P, Chem. Commun., 53, 9765 (2017)
  57. Lo MK, Lee SY, Chang KS, J. Phys. Chem. C, 119, 5218 (2015)
  58. Singh S, Khare N, Nano Energy, 38, 335 (2017)
  59. Stock M, Dunn S, J. Phys. Chem. C, 116, 20854 (2012)
  60. Zhang Y, Li X, Li K, Lian H, Shang M, Lin J, ACS Appl. Mater. Interfaces, 7, 2715 (2015)
  61. Wang YT, Chang KS, J. Am. Ceram. Soc., 99(8), 2593 (2016)
  62. Lin HM, Chang KS, RSC Adv., 7, 30513 (2017)
  63. Dai B, Huang H, Wang W, Chen Y, Lu C, Kou J, Wang L, Wang F, Xu Z, Catal. Sci. Technol., 7, 5594 (2017)
  64. Tong W, Zhang Y, Huang H, Xiao K, Yu S, Zhou Y, Liu L, Li H, Liu L, Huang T, Nano Energy, 53, 513 (2018)
  65. Liu YL, Wu JM, Nano Energy, 56, 74 (2018)
  66. Wu JM, Chang WE, Chang YT, Chang CK, Adv. Mater., 28(19), 3718 (2016)
  67. Lin JH, Tsao YH, Wu MH, Chou TM, Lin ZH, Wu JM, Nano Energy, 31, 575 (2017)
  68. Wu MH, Lee JT, Chung YJ, Srinivaas M, Wu JM, Nano Energy, 40, 369 (2017)
  69. Masimukku S, Hu YC, Lin ZH, Chan SW, Chou TM, Wu JM, Nano Energy, 46, 338 (2018)
  70. Huang D, Yan X, Yan M, Zeng G, Zhou C, Wan J, Cheng M, Xue W, ACS Appl. Mater. Interfaces, 10, 21035 (2018)
  71. Huang D, Li Z, Zeng G, Zhou C, Xue W, Gong X, Yan X, Chen S, Wang W, Cheng M, Appl. Catal. B: Environ., 240, 153 (2018)
  72. Dai BY, Huang HM, Wang FL, Lu CH, Kou JH, Wang LZ, Xu ZZ, Chem. Eng. J., 347, 263 (2018)
  73. Yao B, Ma W, Zhang W, He Y, Yu Y, Niu J, Wang C, Environ. Sci. Nano, 5 (2018)
  74. Li Y, Wang Q, Wang H, Tian J, Cui H, J. Colloid Interface Sci., 537, 206 (2018)
  75. You H, Jia Y, Wu Z, Xu X, Qian W, Xia Y, Ismail M, Electrochem. Commun., 79, 55 (2017)
  76. Qian W, Wu Z, Jia Y, Hong Y, Xu X, You H, Zheng Y, Xia Y, Electrochem. Commun., 81, 124 (2017)