화학공학소재연구정보센터
Automatica, Vol.99, 69-81, 2019
Multi-stage discrete time and randomized dynamic average consensus
In this paper we propose a novel local interaction protocol which solves the discrete time dynamic average consensus problem, i.e., the consensus problem on the average value of a set of time-varying input signals in an undirected graph. The proposed interaction protocol is based on a multi-stage cascade of dynamic consensus filters which tracks the average value of the inputs with small and bounded error. We characterize its convergence properties for time-varying discrete-time inputs with bounded variations. The main novelty of the proposed algorithm is that, with respect to other dynamic average consensus protocols, we obtain the next unique set of advantages; i) The protocol, inspired by proportional dynamic consensus, does not exploit integral control actions or input derivatives, thus exhibits robustness to re initialization errors, changes in the network size and noise in the input signals; ii) The proposed design allows to trade-off the quantity of information locally exchanged by the agents, i.e., the number of stages, with steady-state error, tracking error and convergence time; iii) The protocol can be implemented with randomized and asynchronous local state updates and keep in expectation the performance of the discrete-time version. Numerical examples are given to corroborate the theoretical findings, including the case where a new agent joins and leaves the network during the algorithm execution to show robustness to re-initialization errors during runtime. (C) 2018 Elsevier Ltd. All rights reserved.